Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Countries and the global rate of soil erosion

Abstract

Soil erosion is a major threat to food security and ecosystem viability, as current rates are orders of magnitude higher than natural soil formation. Governments around the world are trying to address the issue of soil erosion. However, we do not know whether countries have much actual control over their soil erosion. Here, we use a high-resolution, global dataset with over 35 million observations and a spatial regression discontinuity design to identify how much of the global rate of soil erosion is actually affected by countries and which country characteristics, including their policies, are associated with this. Overall, moving just across the border from one country to the next, the rate of soil erosion changes on average by ~1.4 t ha−1 yr−1, which reveals a surprisingly large country effect. The best explanation we find is countries’ agricultural characteristics.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: The border between Haiti and the Dominican Republic.
Fig. 2: Agriculture is the best explanation.
Fig. 3: A global map of countries’ soil erosion performance.

Data availability

Data can be retrieved from Wuepper et al.37 and from the corresponding author upon reasonable request.

Code availability

Code and programs can be retrieved from Wuepper et al.37 and from the corresponding author upon reasonable request.

References

  1. 1.

    Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).

    CAS  Article  Google Scholar 

  2. 2.

    Mueller, N. D. et al. Closing yield gaps through nutrient and water management. Nature 490, 254–257 (2012).

    CAS  Article  Google Scholar 

  3. 3.

    Amundson, R. et al. Soil and human security in the 21st century. Science 348, 1261071 (2015).

    Article  Google Scholar 

  4. 4.

    Kaiser, J. Wounding Earth’s fragile skin. Science 304, 1616–1618 (2004).

    CAS  Article  Google Scholar 

  5. 5.

    Montanarella, L. Agricultural policy: govern our soils. Nature 528, 32–33 (2015).

    CAS  Article  Google Scholar 

  6. 6.

    Borrelli, P. et al. An assessment of the global impact of 21st century land use change on soil erosion. Nat. Commun. 8, 2013 (2017).

    Article  Google Scholar 

  7. 7.

    Mirzabaev, A., Nkonya, E., Goedecke, J., Johnson, T. & Anderson, W. in Economics of Land Degradation and Improvement – A Global Assessment for Sustainable Development (eds Nkonya, E., Mirzabaev, A. & von Braun, J.) 167–195 (Springer, 2016).

  8. 8.

    Barbier, E. B. & Hochard, J. P. Does land degradation increase poverty in developing countries? PLoS ONE 11, e0152973 (2016).

    Article  Google Scholar 

  9. 9.

    Nkonya, E. & Anderson, W. Exploiting provisions of land economic productivity without degrading its natural capital. J. Arid Environ. 112, 33–43 (2015).

    Article  Google Scholar 

  10. 10.

    Lambin, E. F. et al. The causes of land-use and land-cover change: moving beyond the myths. Glob. Environ. Change 11, 261–269 (2001).

    Article  Google Scholar 

  11. 11.

    García-Ruiz, J. M. et al. A meta-analysis of soil erosion rates across the world. Geomorphology 239, 160–173 (2015).

    Article  Google Scholar 

  12. 12.

    Lee, D. S. & Lemieux, T. Regression discontinuity designs in economics. J. Econ. Lit. 48, 281–355 (2010).

    Article  Google Scholar 

  13. 13.

    Imbens, G. & Lemieux, T. Regression discontinuity designs: a guide to practice. J. Econom. 142, 615–635 (2008).

    Article  Google Scholar 

  14. 14.

    Bastin, J.-F. et al. The global tree restoration potential. Science 365, 76–79 (2019).

    CAS  Article  Google Scholar 

  15. 15.

    NASA/Goddard Space Flight Center Scientific Visualization Studio Haitian Deforestation. Scientific Visualization Studio https://svs.gsfc.nasa.gov/2640 (2019).

  16. 16.

    Imbens, G. & Kalyanaraman, K. Optimal bandwidth choice for the regression discontinuity estimator. Rev. Econ. Stud. 79, 933–959 (2012).

    Article  Google Scholar 

  17. 17.

    Cattaneo, M. D., Idrobo, N. & Titiunik, R. A Practical Introduction to Regression Discontinuity Designs (Cambridge Univ. Press, 2018).

  18. 18.

    Panagos, P., Borrelli, P. & Robinson, D. A. Common agricultural policy: tackling soil loss across Europe. Nature 526, 195 (2015).

    CAS  Article  Google Scholar 

  19. 19.

    Deng, L., Shangguan, Z.-P. & Li, R. Effects of the grain-for-green program on soil erosion in china. Int. J. Sediment Res. 27, 120–127 (2012).

    Article  Google Scholar 

  20. 20.

    Wuepper, D. Does culture affect soil erosion? Empirical evidence from Europe. Eur. Rev. Agric. Econ. https://doi.org/10.1093/erae/jbz029 (2019).

  21. 21.

    Panagos, P. et al. Global rainfall erosivity assessment based on high-temporal resolution rainfall records. Sci. Rep. 7, 4175 (2017).

    Article  Google Scholar 

  22. 22.

    Hengl, T. et al. SoilGrids1km — global soil information based on automated mapping. PLoS ONE 9, e105992 (2014).

    Article  Google Scholar 

  23. 23.

    Wischmeier, W. H. & Smith, D. D. Predicting Rainfall Erosion Losses: A Guide to Conservation Planning (US Department of Agriculture, 1978).

  24. 24.

    Desmet, P. & Govers, G. A GIS procedure for automatically calculating the USLE LS factor on topographically complex landscape units. J. Soil Water Conserv. 51, 427–433 (1996).

    Google Scholar 

  25. 25.

    Robinson, N., Regetz, J. & Guralnick, R. P. EarthEnv-DEM90: a nearly-global, void-free, multi-scale smoothed, 90m digital elevation model from fused ASTER and SRTM data. ISPRS J. Photogramm. Remote Sens. 87, 57–67 (2014).

    Article  Google Scholar 

  26. 26.

    Reuter, H. I., Nelson, A. & Jarvis, A. An evaluation of void-filling interpolation methods for SRTM data. Int. J. Geogr. Inf. Sci. 21, 983–1008 (2007).

    Article  Google Scholar 

  27. 27.

    Brenning, A., Bangs, D., Becker, M., Schratz, P. & Polakowski, F. Package ‘RSAGA’. The Comprehensive R Archive Network https://CRAN.R-project.org/package=RSAGA (2018).

  28. 28.

    Loveland, T. R. & Belward, A. The IGBP-DIS global 1km land cover data set, DISCover: first results. Int. J. Remote Sens. 18, 3289–3295 (1997).

    Article  Google Scholar 

  29. 29.

    Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).

    CAS  Article  Google Scholar 

  30. 30.

    Monfreda, C., Ramankutty, N. & Foley, J. A. Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Glob. Biogeochem. Cycles 22, GB1022 (2008).

    Article  Google Scholar 

  31. 31.

    Ramankutty, N., Evan, A. T., Monfreda, C. & Foley, J. A. Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Glob. Biogeochem. Cycles 22, GB1003 (2008).

    Article  Google Scholar 

  32. 32.

    Land Processes Distributed Active Archive Center (US Geological Survey and National Aeronautics and Space Administration, 2019); https://lpdaac.usgs.gov/

  33. 33.

    Cattaneo, M. & Escanciano, J. Regression Discontinuity Designs: Theory and Applications (Emerald Group Publishing, 2017).

  34. 34.

    Keele, L. J. & Titiunik, R. Geographic boundaries as regression discontinuities. Polit. Anal. 23, 127–155 (2014).

    Article  Google Scholar 

  35. 35.

    Calonico, S., Cattaneo, M. D. & Titiunik, R. Robust nonparametric confidence intervals for regression-discontinuity designs. Econometrica 82, 2295–2326 (2014).

    Article  Google Scholar 

  36. 36.

    Cattaneo, M. D. & Vazquez-Bare, G. The choice of neighborhood in regression discontinuity designs. Obs. Stud. 2, 134–136 (2016).

    Google Scholar 

  37. 37.

    Wuepper, D., Borrelli, P. & Finger, R. Dataset: countries and the global rate of soil erosion. ETH Zurich Research Collection http://hdl.handle.net/20.500.11850/361244 (2019).

Download references

Author information

Affiliations

Authors

Contributions

D.W. contributed mainly to analysis and writing, P.B. contributed mainly to data preparation and R.F. contributed mainly to writing.

Corresponding author

Correspondence to David Wuepper.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary Figs. 1–7 and Table 1.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wuepper, D., Borrelli, P. & Finger, R. Countries and the global rate of soil erosion. Nat Sustain 3, 51–55 (2020). https://doi.org/10.1038/s41893-019-0438-4

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing