Abstract
Flooding is the costliest form of natural disaster and impacts are expected to increase, in part, due to exposure of new development to flooding. However, these costs could be reduced through the acquisition and conservation of natural land in floodplains. Here we quantify the benefits and costs of reducing future flood damages in the United States by avoiding development in floodplains. We find that by 2070, cumulative avoided future flood damages exceed the costs of land acquisition for more than one-third of the unprotected natural lands in the 100-yr floodplain (areas with a 1% chance of flooding annually). Large areas have an even higher benefit–cost ratio: for 54,433 km2 of floodplain, avoided damages exceed land acquisition costs by a factor of at least five to one. Strategic conservation of floodplains would avoid unnecessarily increasing the economic and human costs of flooding while simultaneously providing multiple ecosystem services.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Data availability
Publicly available data are available online as follows: USGS National Elevation Dataset (http://www.ned.usgs.gov); HydroSHEDS (http://www.hydrosheds.org); USACE National Levee Database (http://www.nld.usace.army.mil); FEMA National Structure Inventory (http://data.femadata.com/FIMA/NSI_2010); MRLC National Land Cover Database (http://www.mrlc.gov/nlcd2011.php); USGS PADUS (http://gapanalysis.usgs.gov/padus); Theobold (2014) National Land-Use Dataset (http://csp-inc.org/public/NLUD2010_20140326.zip); EPA ICLUS scenarios (http://www.epa.gov/iclus); FAO Harmonized World Soil Database (http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en); NOAA Intensity–Duration–Frequency curves (http://hdsc.nws.noaa.gov/hdsc/pfds); Elvidge et al. (2007) satellite luminosity data (http://www.ngdc.noaa.gov/eog); USDA Census of Agriculture (https://www.nass.usda.gov/Quick_Stats/index.php); and FHFA residential land price data (https://www.fhfa.gov/PolicyProgramsResearch/Research/Pages/wp1901.aspx). Data available for non-commercial academic research purposes are available as follows: flood hazard data can be acquired by contacting Christopher Sampson at Fathom (c.sampson@fathom.global); the hydraulic model can be found at LISFLOOD-FP (http://www.bristol.ac.uk/geography/research/hydrology/models/lisflood/downloads/); and Global Runoff Data Center discharge data can be found at http://www.bafg.de/GRDC/EN/01_GRDC/12_plcy/data_policy_node.html.
References
Miller, S., Muir-Wood, R. & Boissonnade, A. in Climate Extremes and Society (eds Diaz, H. F. & Murnane, R. J.) 225–247 (Cambridge Univ. Press, 2008).
Hydrologic Information Center—Flood Loss Data (National Weather Service); http://www.nws.noaa.gov/hic/ accessed June 30, 2018.
Winsemius, H. C. et al. Global drivers of future river flood risk. Nat. Clim. Change 6, 381–385 (2016).
Wing, O. E. J. et al. Estimates of present and future flood risk in the conterminous United States. Env. Res. Lett. 13, 034023 (2018).
NRC, Levees and the National Flood Insurance Program: Improving Policies and Practices (National Academies, 2013); https://doi.org/10.17226/18309
Infrastructure Report Card 2017 (ASCE); https://www.infrastructurereportcard.org/ accessed on July 20, 2018.
Tockner, K. & Stanford, J. Riverine flood plains: present and future trends. Env. Conserv. 29, 308–330 (2002).
Tockner, K., Pusch, M., Borchardt, D. & Lorang, M. S. Multiple stressors in coupled river–floodplain ecosystems. Freshw. Biol. 55, 131–151 (2010).
Guida, R. J., Remo, J. W. F. & Secchi, S. Tradeoffs of strategically reconnecting rivers to their floodplains: the case of the Lower Illinois River. Sci. Total Env. 572, 43–55 (2016).
Kousky, C. & Walls, M. Floodplain conservation as a flood mitigation strategy: examining costs and benefits. Ecol. Econ. 104, 119–128 (2014).
Schober, B., Hauer, C. & Habersack, H. A novel assessment of the role of Danube floodplains in flood hazard reduction (FEM method). Nat. Hazards 75, 33–50 (2015).
Wing, O. E. J. et al. Validation of a 30m resolution flood hazard model of the conterminous United States. Water Resour. Res. 53, 7968–7986 (2017).
Theobald, D. M. Development and applications of a comprehensive land use classification and map for the US. PLoS ONE 9, E94628 (2014).
Discount Rates in the Economic Evaluation of U.S. Army Corps of Engineers Projects CRS Report 44594 (Congressional Research Service, 2016); https://www.everycrsreport.com/files/20160815_R44594_1b7c1444405de31f302240c3b168ea7426b93c36.pdf
USDA 2017 Census of Agriculture (US Government Printing Office, 2019).
Davis, M. A., Larson, W. D., Oliner, S. D. & Shui, J. The Price of Residential Land for Counties, ZIP Codes, and Census Tracts in the United States Working Paper Series 2019 (FHFA, 2019).
Isgin, T. & Forster, D. L. A hedonic price analysis of farmland option premiums under urban influences. Can. J. Agric. Econ. 54, 327–340 (2006).
Plantinga, A. J., Lubowski, R. N. & Stavins, R. N. The effects of potential land development on agricultural land prices. J. Urban Econ. 52, 561–581 (2006).
Brown, G. M. Jr. & Pollakowski, H. O. Economic valuation of shoreline. Rev. Econ. Stat. 59, 272–278 (1977).
Ferraro, P. J. Assigning priority to environmental policy interventions in a heterogenous world. J. Policy Anal. Manag. 22, 27–43 (2003).
Rose, A. in Modeling Spatial and Economic Impacts of Disasters (eds Okuyama, Y. & Chang, S. E.) 13–46 (Springer, 2004).
Hallegatte, S. An adaptive regional input–output model and its application to the assessment of the economic cost of Katrina. Risk Anal. 28, 779–799 (2008).
Koks, E. E., Bočkarjova, M., de Moel, H. & Aerts, J. C. J. H. Integrated direct and indirect flood risk modeling: development and sensitivity analysis. Risk Anal. 35, 882–900 (2015).
Di Baldassarre, G. et al. HESS Opinions: an interdisciplinary research agenda to explore the unintended consequences of structural flood protection. Hydrol. Earth Syst. Sci. Discuss. 22, 5629–5637 (2018).
Heine, R. A. & Pinter, N. Levee effects upon flood levels: an empirical assessment. Hydrol. Process. 26, 3225–3240 (2012).
Arnell, N. W. & Gosling, S. N. The impacts of climate change on river flood risk at the global scale. Climatic Change 134, 387–401 (2016).
Slater, L. J. & Villarini, G. Recent trends in US flood risk. Geophys. Res. Lett. 43, 12428–12436 (2016).
Xu, Y. J. Transport and retention of nitrogen, phosphorus and carbon in North America’s largest river swamp basin, the Atchafalaya River Basin. Water 5, 379–393 (2013).
Schindler, S. et al. Multifunctional floodplain management and biodiversity effects: lessons from six European countries. Biodivers. Conserv. 25, 1349–1382 (2016).
Lehner, B., Verdin, K. & Jarvis, A. New global hydrography derived from spaceborne elevation data. Eos Trans. Am. Geophys. Union 89, 93–94 (2008).
Neal, J., Schumann, G. & Bates, P. A subgrid channel model for simulating river hydraulics and floodplain inundation over large and data sparse areas. Water Resour. Res. 48, W11506 (2012).
Bates, P. D., Horritt, M. S. & Fewtrell, T. J. A simple inertial formulation of the shallow water equations for efficient two-dimensional flood inundation modelling. J. Hydrol. 387, 33–45 (2010).
Smith, A., Sampson, C. & Bates, P. Regional flood frequency analysis at the global scale. Water Resour. Res. 51, 539–553 (2015).
Morin, J. & Benyamini, Y. Rainfall infiltration into bare soils. Water Resour. Res. 13, 813–817 (1977).
Elvidge, C. D. et al. Global distribution and density of constructed impervious surfaces. Sensors 7, 1962–1979 (2007).
What is the Updated Flood Map for Surface Water? (UK Environment Agency, accessed January 2013); http://www.gov.uk/government/uploads/system/uploads/attachment_data/file/297432/LIT_8988_0bf634.pdf
EPA Updates to the Demographic and Spatial Allocation Models to Produce Integrated Climate and Land Use Scenarios (ICLUS) Version 2, EPA/600/R-16/366F (National Center for Environmental Assessment, 2016); http://www.epa.gov/ncea
Homer, C. G. et al. Completion of the 2011 National Land Cover Database for the conterminous United States—representing a decade of land cover change information. Photogramm. Eng. Remote Sens. 81, 345–354 (2015).
Meyer, V., Haase, D. & Scheuer, S. Flood risk assessment in European river basins—concept, methods, and challenges exemplified at the Mulde River. Integr. Environ. Assess. Manag. 5, 17–26 (2008).
Moore, M. A., Boardman, A. E. & Vining, A. R. More appropriate discounting: the rate of social time preference and the value of the social discount rate. J. Benefit–Cost Anal. 4, 1–16 (2013).
Freeman, M. C., Groom, B., Panopoulou, E. & Pantelidis, T. Declining discount rates and the Fisher Effect: inflated past, discounted future? J. Environ. Econ. Manag. 73, 32–49 (2015).
Alonso, W. Location and Land Use: Toward a General Theory of Land Rent (Harvard Univ. Press 1964).
Mills, E. S. An aggregative model of resource allocation in a metropolitan area. Am. Econ. Rev. 57, 197–210 (1967).
Muth, R. F. Cities and Housing; The Spatial Pattern of Urban Residential Land Use (Univ. Chicago Press, 1969).
Brueckner, J. K. The structure of urban equilibria: a unified treatment of the Muth—Mills model. Handb. Reg. Urban Econ. 2, 821–845 (1987).
Davis, M. A., Oliner, S. D., Pinto, E. J. & Bokka, S. Residential land values in the Washington, DC metro area: new insights from big data. Reg. Sci. Urban Econ. 66, 224–246 (2017).
Acknowledgements
This study was made possible by funding for the Nature Conservancy from the Kresge Foundation. P.B. was supported by a Leverhulme Research Fellowship and a Wolfson Research Merit Award from the Royal Society in the United Kingdom. We thank Philip Morefield for providing the ICLUS data. W.D.L contributed to this research in his personal capacity and not as part of his official duties at the Federal Housing Finance Agency. The analysis and conclusions are those of the authors alone and should not be represented or interpreted as conveying an official Federal Housing Finance Agency position, policy, analysis, opinion or endorsement. Any errors or omissions are the sole responsibility of the authors.
Author information
Authors and Affiliations
Contributions
K.A.J., O.W., P.B., J.F., T.K., C.S. and A.S. designed the research. O.W., T.K., W.L., J.F. and K.A.J. completed the analyses. K.A.J. drafted the manuscript. All authors discussed the results and edited and commented on the manuscript.
Corresponding authors
Ethics declarations
Competing interests
K.A.J., J.F, T.K. and W.D.L. have no competing interests. O.W., P.B., C.S. and A.S. have an interest in or are employed by Fathom, a flood analytics company based in the United Kingdom.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Discussion, Methods, Figs. 1–5 and Tables 1–4.
Rights and permissions
About this article
Cite this article
Johnson, K.A., Wing, O.E.J., Bates, P.D. et al. A benefit–cost analysis of floodplain land acquisition for US flood damage reduction. Nat Sustain 3, 56–62 (2020). https://doi.org/10.1038/s41893-019-0437-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41893-019-0437-5