Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Research gaps in knowledge of the impact of urban growth on biodiversity

Abstract

By 2030, an additional 1.2 billion people are forecast in urban areas globally. We review the scientific literature (n = 922 studies) to assess direct and indirect impacts of urban growth on habitat and biodiversity. Direct impacts are cumulatively substantial, with 290,000 km2 of natural habitat forecast to be converted to urban land uses between 2000 and 2030. Studies of direct impact are disproportionately from high-income countries. Indirect urban impacts on biodiversity, such as food consumption, affect a greater area than direct impacts, but comparatively few studies (34%) have quantified urban indirect impacts on biodiversity.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Conceptual diagram of direct and indirect impacts on urban areas.
Fig. 2: Direct impacts of urban growth on habitat over time.
Fig. 3: Forecast direct impacts of urban growth on habitat.
Fig. 4: Locations of research studies into urban impacts on biodiversity.

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. 1.

    World Urbanization Prospects: The 2018 Revision (United Nations Population Division, 2018).

  2. 2.

    Seto, K., Guneralp, B. & Hutyra, L. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl Acad. Sci. USA 109, 16083–16088 (2012).

    CAS  Google Scholar 

  3. 3.

    Güneralp, B. & Seto, K. Futures of global urban expansion: uncertainties and implications for biodiversity conservation. Environ. Res. Lett. 8, 014025 (2013).

    Google Scholar 

  4. 4.

    McDonald, R. et al. Nature in the Urban Century: A Global Assessment of Where and How to Conserve Nature for Biodiversity and Human Wellbeing (The Nature Conservancy, 2018).

  5. 5.

    Elmqvist, T. et al. Urbanization, Biodiversity, and Ecosystem Services: Challenges and Opportunities, a Global Assessment (Springer, 2013).

  6. 6.

    Angel, S., Blei, A. M., Civco, D. L. & Parent, J. Atlas of Urban Expansion (Lincoln Institute of Land Policy, 2012).

  7. 7.

    Satterthwaite, D. in United Nations Expert Group Meeting on Population Distribution, Urbanization, Internal Migration and Development ESA/P/WP.206 (ed. Department of Economic and Social Affairs, Population Division) 309–334 (United Nations, 2008).

  8. 8.

    Güneralp, B. et al. Global scenarios of urban density and its impacts on building energy use through 2050. Proc. Natl Acad. Sci. USA 114, 8945–8950 (2017).

    Google Scholar 

  9. 9.

    Flörke, M., Schneider, C. & McDonald, R. I. Water competition between cities and agriculture driven by climate change and urban growth. Nat. Sustain. 1, 51–58 (2018).

    Google Scholar 

  10. 10.

    Regmi, A. & Dyck, J. in Changing Structure of Global Food Consumption and Trade WRS-01-1 (ed. Regmi, A.) 23–30 (Market and Trade Economics Division, Economic Research Service, USDA, 2001).

  11. 11.

    Cole, M. A. & Neumayer, E. Examining the impact of demographic factors on air pollution. Popul. Environ. 26, 5–21 (2004).

    Google Scholar 

  12. 12.

    Dyson, T. The role of the demographic transition in the process of urbanization. Popul. Dev. Rev. 37, 34–54 (2011).

    Google Scholar 

  13. 13.

    World Bank (Oxford University Press, 2009).

  14. 14.

    Land Cover CCI Product User Guide Version 2.0 (European Space Agency, 2017); www.esa-landcover-cci.org

  15. 15.

    Redefining "Urban": A New Way to Measure Metropolitan Areas (OECD, 2012).

  16. 16.

    CBD Global Biodiversity Outlook 3 (Secretariat of the Convention on Biological Diversity, 2010).

  17. 17.

    Díaz, S. et al. Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of The Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services 1–39 (United Nations, 2019).

  18. 18.

    Pereira, H. M. et al. Scenarios for global biodiversity in the 21st century. Science 330, 1496–1501 (2010).

    CAS  Google Scholar 

  19. 19.

    Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 1246752 (2014).

    CAS  Google Scholar 

  20. 20.

    Ceballos, G. et al. Accelerated modern human–induced species losses: entering the sixth mass extinction. Sci. Adv. 1, e1400253 (2015).

    Google Scholar 

  21. 21.

    McDonald, R. I. Ecosystem service demand and supply along the urban-to-rural gradient. J. Conserv. Plan. 5, 1–14 (2009).

    Google Scholar 

  22. 22.

    Aronson, M. F. et al. A global analysis of the impacts of urbanization on bird and plant diversity reveals key anthropogenic drivers. Proc. R. Soc. B 281, 20133330 (2014).

    Google Scholar 

  23. 23.

    Alberti, M. et al. Global urban signatures of phenotypic change in animal and plant populations. Proc. Natl Acad. Sci. USA 114, 8951–8956 (2017).

    CAS  Google Scholar 

  24. 24.

    UN Habitat Cities and Climate Change: Global Report on Human Settlements 2011 (Earthscan, 2011).

  25. 25.

    Frey, H. Designing the City: Towards a More Sustainable Urban Form (Taylor & Francis, 2003).

  26. 26.

    Alberti, M. et al. The impact of urban patterns on aquatic ecosystems: an empirical analysis in Puget lowland sub-basins. Landsc. Urban Plan. 80, 345–361 (2007).

    Google Scholar 

  27. 27.

    Kennedy, C., Pincetl, S. & Bunje, P. The study of urban metabolism and its applications to urban planning and design. Environ. Pollut. 159, 1965–1973 (2011).

    CAS  Google Scholar 

  28. 28.

    Montgomery, M., Stren, R., Cohen, B. & Reed, H. E. Cities Transformed: Demographic Change and its Implications in the Developing World (National Academies Press, 2003).

  29. 29.

    Lynch, K. Good City Form (MIT Press, 1984).

  30. 30.

    Mumford, L. The City in History: Its Origins, Its Transformations, and Its Prospects (Harvest Books, 1968).

  31. 31.

    Gaspar, J. & Glaeser, E. L. Information technology and the future of cities. J. Urban Econ. 43, 136–156 (1998).

    Google Scholar 

  32. 32.

    Sanderson, E. W., Walston, J. & Robinson, J. G. From bottleneck to breakthrough: urbanization and the future of biodiversity conservation. BioScience 68, 412–426 (2018).

    Google Scholar 

  33. 33.

    Van Der Waals, J. The compact city and the environment: a review. Tijdschr. Econ. Soc. Geogr. 91, 111–121 (2000).

    Google Scholar 

  34. 34.

    McDonald, R. I. Global urbanization: can ecologists identify a sustainable way forward? Front. Ecol. Environ. 6, 99–104 (2008).

    Google Scholar 

  35. 35.

    Seto, K. et al. in Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to theFifth Assessment Report (eds Edenhofer, O. et al.) 923–1000 (Intergovernmental Panel on Climate Change, 2014).

  36. 36.

    Meyer, S. B. & Lunnay, B. The application of abductive and retroductive inference for the design and analysis of theory-driven sociological research. Sociol. Res. Online 18, 1–11 (2013).

    Google Scholar 

  37. 37.

    Ferraro, P. J., Sanchirico, J. N. & Smith, M. D. Causal inference in coupled human and natural systems. Proc. Natl Acad. Sci. USA 116, 5311–5318 (2019).

    CAS  Google Scholar 

  38. 38.

    McDonald, R. I. in Encyclopedia of Biodiversity 2nd edn (ed. Levin, S.) (Academic Press, 2013).

  39. 39.

    NRC Cities Transformed: Demographic Change and its Implication in the Developing World (National Academies Press, 2003).

  40. 40.

    Jiang, L. & O’Neill, B. C. Global urbanization projections for the Shared Socioeconomic Pathways. Global Environmental Change 42, 193–199 (2017).

    Google Scholar 

  41. 41.

    Jones, B. & O’Neill, B. Spatially explicit global population scenarios consistent with the Shared Socioeconomic Pathways. Environ. Res. Lett. 11, 084003 (2016).

    Google Scholar 

  42. 42.

    Pesaresi, M., Melchiorri, M., Siragusa, A. & Kemper, T. Atlas of the Human Planet 2016: Mapping Human Presence on Earth with the Global Human Settlement Layer (European Commission, 2016).

  43. 43.

    Angel, S. et al. Our Not-So-Urban World Working Paper No. 42 (The Marron Institute of Urban Management, New York University, 2018); https://go.nature.com/2qnGrJ2

  44. 44.

    Schneider, A., Friedl, M. A. & Potere, D. A new map of global urban extent from MODIS satellite data. Environ. Res. Lett. 4, 0044003 (2009).

    Google Scholar 

  45. 45.

    d’Amour, C. B. et al. Future urban land expansion and implications for global croplands. Proc. Natl Acad. Sci. USA 114, 8939–8944 (2017).

    Google Scholar 

  46. 46.

    Güneralp, B., Lwasa, S., Masundire, H., Parnell, S. & Seto, K. Urbanization in Africa: challenges and opportunities for conservation. Environ. Res. Lett. 13, 015002 (2017).

    Google Scholar 

  47. 47.

    Angel, S., Parent, J., Civco, D. L., Blei, A. & Potere, D. The dimensions of global urban expansion: estimates and projections for all countries, 2000–2050. Progress Plan. 75, 53–107 (2011).

    Google Scholar 

  48. 48.

    Zhou, Y., Varquez, A. C. & Kanda, M. High-resolution global urban growth projection based on multiple applications of the SLEUtH urban growth model. Sci. Data 6, 34 (2019).

    Google Scholar 

  49. 49.

    Doxsey-Whitfield, E. et al. Taking advantage of the improved availability of census data: a first look at the gridded population of the world, version 4. Papers Appl. Geogr. 1, 226–234 (2015).

    Google Scholar 

  50. 50.

    UNPD Household Size and Composition Around the World (United Nations, Department of Economic and Social Affairs, Population Division, 2017).

  51. 51.

    Theobald, D. M. Landscape patterns of exurban growth in the USA from 1980 to 2020. Ecol. Soc. 10, 32 (2005).

    Google Scholar 

  52. 52.

    Theobald, D. M. Land-use dynamics beyond the American urban fringes. Geogr. Rev. 91, 544–564 (2001).

    Google Scholar 

  53. 53.

    McDonald, R. I., Güneralp, B., Huang, C.-W., Seto, K. & You, M. Conservation priorities to protect vertebrate endemics from global urban expansion. Biol. Conserv. 224, 290–299 (2018).

    Google Scholar 

  54. 54.

    Luck, G. W. A review of the relationships between human population density and biodiversity. Biol. Rev. 82, 607–645 (2007).

    Google Scholar 

  55. 55.

    Luck, G. W. The relationships between net primary productivity, human population density and species conservation. J. Biogeogr. 34, 201–212 (2007).

    Google Scholar 

  56. 56.

    Burgess, N. D. et al. Correlations among species distributions, human density and human infrastructure across the high biodiversity tropical mountains of Africa. Biol. Conserv. 134, 164–177 (2007).

    Google Scholar 

  57. 57.

    Polaina, E., González-Suárez, M. & Revilla, E. Socioeconomic correlates of global mammalian conservation status. Ecosphere 6, 1–34 (2015).

    Google Scholar 

  58. 58.

    Shochat, E. et al. Invasion, competition, and biodiversity loss in urban ecosystems. BioScience 60, 199–208 (2010).

    Google Scholar 

  59. 59.

    Faeth, S. H., Bang, C. & Saari, S. Urban biodiversity: patterns and mechanisms. Ann. N. Y. Acad. Sci. 1223, 69–81 (2011).

    Google Scholar 

  60. 60.

    Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).

    CAS  Google Scholar 

  61. 61.

    Weller, R., Hoch, C. & Huang, C. Atlas for the End of the World http://atlas-for-the-end-of-the-world.com (2017).

  62. 62.

    Conde, D. A. et al. Opportunities and costs for preventing vertebrate extinctions. Curr. Biol. 25, R219–R221 (2015).

    CAS  Google Scholar 

  63. 63.

    Güneralp, B., Perlstein, A. S. & Seto, K. C. Balancing urban growth and ecological conservation: a challenge for planning and governance in China. Ambio 44, 532–543 (2015).

    Google Scholar 

  64. 64.

    Baillie, J. E. M., Griffiths, J., Turvey, S., Loh, J. & Collen, B. Evolution Lost Status & Trends of the World’s Vertebrates (Zoological Society of London, 2010).

  65. 65.

    Eisenhauer, N., Bonn, A. & Guerra, C. A. Recognizing the quiet extinction of invertebrates. Nat. Commun 10, 50 (2019).

    CAS  Google Scholar 

  66. 66.

    Girgin, S., Kazanci, N. & Dügel, M. Relationship between aquatic insects and heavy metals in an urban stream using multivariate techniques. Int. J. Environ. Sci. Technol. 7, 653–664 (2010).

    CAS  Google Scholar 

  67. 67.

    Carvalho, L., Cortes, R. & Bordalo, A. A. Evaluation of the ecological status of an impaired watershed by using a multi-index approach. Environ. Monit. Assess. 174, 493–508 (2011).

    CAS  Google Scholar 

  68. 68.

    Violin, C. R. et al. Effects of urbanization and urban stream restoration on the physical and biological structure of stream ecosystems. Ecol. Appl. 21, 1932–1949 (2011).

    Google Scholar 

  69. 69.

    Carew, M. E., Kellar, C. R., Pettigrove, V. J. & Hoffmann, A. A. Can high-throughput sequencing detect macroinvertebrate diversity for routine monitoring of an urban river? Ecol. Indic. 85, 440–450 (2018).

    CAS  Google Scholar 

  70. 70.

    Güneralp, B., Seto, K. C. & Ramachandran, M. Evidence of urban land teleconnections and impacts on hinterlands. Curr. Opin. Environ. Sustain. 5, 445–451 (2013).

    Google Scholar 

  71. 71.

    Seto, K. C. et al. Urban land teleconnections and sustainability. Proc. Natl Acad. Sci. USA 109, 7687–7692 (2012).

    CAS  Google Scholar 

  72. 72.

    Zimmerer, K., Lambin, E. & Vanek, S. Smallholder telecoupling and potential sustainability. Ecol. Soc. 23, 30 (2018).

    Google Scholar 

  73. 73.

    Luck, M. A., Jenerette, G. D., Wu, J. & Grimm, N. B. The urban funnel model and the spatially heterogeneous ecological footprint. Ecosystems 4, 782–796 (2001).

    Google Scholar 

  74. 74.

    Moore, J., Kissinger, M. & Rees, W. E. An urban metabolism and ecological footprint assessment of Metro Vancouver. J. Environ. Manag. 124, 51–61 (2013).

    Google Scholar 

  75. 75.

    Zhang, Y., Yang, Z. & Yu, X. Urban metabolism: a review of current knowledge and directions for future study. Environ. Sci. Technol. 49, 11247–11263 (2015).

    CAS  Google Scholar 

  76. 76.

    FAO FAOSTAT Agri-Environmental Indicators (Food and Agriculture Organization of the United Nations, 2016).

  77. 77.

    Popkin, B. M. Urbanization, lifestyle changes and the nutrition transition. World Dev. 27, 1905–1916 (1999).

    Google Scholar 

  78. 78.

    Diet, Nutrition, and the Prevention of Chronic Diseases: Report of a Joint WHO/FAO Expert Consultation Vol. 916 (World Health Organization, 2003).

  79. 79.

    Matson, P. A., Parton, W. J., Power, A. & Swift, M. Agricultural intensification and ecosystem properties. Science 277, 504–509 (1997).

    CAS  Google Scholar 

  80. 80.

    Chaplin-Kramer, R. et al. Spatial patterns of agricultural expansion determine impacts on biodiversity and carbon storage. Proc. Natl Acad. Sci. USA 112, 7402–7407 (2015).

    CAS  Google Scholar 

  81. 81.

    Seto, K. C. & Ramankutty, N. Hidden linkages between urbanization and food systems. Science 352, 943–945 (2016).

    CAS  Google Scholar 

  82. 82.

    Platt, R. H., Rowntree, R. A. & Muick, P. C. The Ecological City: Preserving and Restoring Urban Biodiversity (Univ. Massachusetts Press, 1994).

  83. 83.

    Muller, N., Werner, P. & Kelcey, J. G. Urban Biodiversity and Design (John Wiley & Sons, 2010).

  84. 84.

    Beatley, T. Biophilic Cities: Integrating Nature into Urban Design and Planning (Island Press, 2010).

  85. 85.

    Steiner, F., Thompson, G. & Carbonell, A. Nature and Cities (The Lincoln Institute for Land Policy, 2016).

  86. 86.

    Nagendra, H., Bai, X., Brondizio, E. S. & Lwasa, S. The urban south and the predicament of global sustainability. Nat. Sustain. 1, 341–349 (2018).

    Google Scholar 

  87. 87.

    Schwarze, R., Niles, J. O. & Olander, J. Understanding and managing leakage in forest–based greenhouse–gas–mitigation projects. Philos. Trans. Royal Soc. A 360, 1685–1703 (2002).

    CAS  Google Scholar 

  88. 88.

    Fang, C., Liu, H. & Li, G. International progress and evaluation on interactive coupling effects between urbanization and the eco-environment. J. Geogr. Sci. 26, 1081–1116 (2016).

    Google Scholar 

Download references

Acknowledgements

The authors thank the thousands of scientists whose data and papers have made this Review possible. This Review is a joint effort of the working group sUrbio2050 kindly supported by sDiv, the Synthesis Centre of the German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, funded by the German Research Foundation (FZT 118).

Author information

Affiliations

Authors

Contributions

Authors co-designed the literature review during a working group meeting. A.V.M. led the literature review, which all authors contributed to. R.I.M. wrote the initial version of this manuscript, with significant feedback and guidance from H.M.P. and A.V.M. All authors made substantial contributions to the intellectual content, analysis and interpretation of the literature review, and editing of the manuscript.

Corresponding author

Correspondence to Robert I. McDonald.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods.

Supplementary Table 1

Table S1. Forecasted urban-caused natural habitat loss, by country or other administrative unit (2000–2030). Results are sorted in descending order of the percentage of the total land area on which natural habitat was forecast to be lost to urban growth, from greatest to least urban impact. Small administrative units or other units with no data (for example, Antarctica) are not shown in this table.

Supplementary Table 2

Table S2. Forecasted urban-caused natural habitat loss, by biome and country-level income group (2000–2030). Results are sorted in descending order of the percentage of the total land area on which natural habitat was forecast to be lost to urban growth, from greatest to least urban impact.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

McDonald, R.I., Mansur, A.V., Ascensão, F. et al. Research gaps in knowledge of the impact of urban growth on biodiversity. Nat Sustain 3, 16–24 (2020). https://doi.org/10.1038/s41893-019-0436-6

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing