Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

Integrated scenarios to support analysis of the food–energy–water nexus

Abstract

The literature emphasizes the important relationships between the consumption and production of food, energy and water, and environmental challenges such as climate change and loss of biodiversity. New tools are needed to analyse the future dynamics of this nexus. Here, we introduce a set of model-based scenarios and associated Sankey diagrams that enable analysis of the relevant relationships and dynamics, as well as the options to formulate response strategies. The scenarios show that if no new policies are adopted, food production and energy generation could further increase by around 60%, and water consumption by around 20% over the period 2015–2050, leading to further degradation of resources and increasing environmental pressure. Response strategies in terms of climate policies, higher agricultural yields, dietary change and reduction of food waste are analysed to reveal how they may contribute to reversing these trends, and possibly even lead to a reduction of land use in the future.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Resource consumption and associated impacts for the SSP2 reference and illustrative response scenarios over time.
Fig. 2: Sankey diagrams showing 2050 projections of the SSP2 baseline and response scenarios.
Fig. 3: Linkages between the different agriculture, energy and water systems.
Fig. 4: Options for change and their impact on resource consumption, land use and greenhouse gas emissions.

Similar content being viewed by others

Data availability

The data relating to the scenarios described in this paper are available for download from https://models.pbl.nl/image/index.php/Download. The data supporting the figures are available from the IMAGE website at PBL (https://go.nature.com/32CZSLh).

References

  1. De Stercke, S. Dynamics of Energy Systems: A Useful Perspective IIASA Interim Report IR-14-013 (IIASA, 2014).

  2. FAOSTAT (UN Food and Agriculture Organization, 2017); http://www.fao.org/faostat/en/#home

  3. Reid, W. et al. Millennium Ecosystem Assessment Synthesis Report (Island Press, 2005).

  4. Hoff, H. Understanding the Nexus: Background Paper for the Bonn2011 Nexus Conference (Stockholm Environment Institute, 2011).

  5. Howells, M. et al. Integrated analysis of climate change, land-use, energy and water strategies. Nat. Clim. Change 3, 621–626 (2013).

    Article  Google Scholar 

  6. Momblanch, A. et al. Untangling the water–food–energy–environment nexus for global change adaptation in a complex Himalayan water resource system. Sci. Total Environ. 655, 35–47 (2019).

    Article  CAS  Google Scholar 

  7. Welsch, M. et al. Adding value with CLEWS—modelling the energy system and its interdependencies for Mauritius. Appl. Energy 113, 1434–1445 (2014).

    Article  Google Scholar 

  8. Hussien, W. A., Memon, F. A. & Savic, D. A. An integrated model to evaluate water–energy–food nexus at a household scale. Environ. Model. Softw. 93, 366–380 (2017).

    Article  Google Scholar 

  9. Bleischwitz, R. et al. Resource nexus perspectives towards the United Nations Sustainable Development Goals. Nat. Sustain. 1, 737–743 (2018).

    Article  Google Scholar 

  10. Konadu, D. et al. Not all low-carbon energy pathways are environmentally “no-regrets” options. Glob. Environ. Change 35, 379–390 (2015).

    Article  Google Scholar 

  11. Johnson, N. et al. Integrated solutions for the water-energy-land nexus: are global models rising to the challenge? Water 11, 2223 (2019).

    Article  Google Scholar 

  12. Obersteiner, M. et al. Assessing the land resource–food price nexus of the Sustainable Development Goals. Sci. Adv. 2, e1501499 (2016).

    Article  Google Scholar 

  13. Byers, E. et al. Global exposure and vulnerability to multi-sector development and climate change hotspots. Environ. Res. Lett. 13, 055012 (2018).

    Article  Google Scholar 

  14. Oberle, B. et al. Global Resources Outlook 2019: Natural Resources for the Future We Want (United Nations Environment Programme & International Resource Panel, 2019).

  15. Nilsson, M., Griggs, D. J. & Visbeck, M. Policy: map the interactions between Sustainable Development Goals. Nature 534, 320–322 (2016).

    Article  Google Scholar 

  16. Stafford-Smith, M. et al. Integration: the key to implementing the Sustainable Development Goals. Sustain. Sci. 12, 911–919 (2017).

    Article  Google Scholar 

  17. Rockström, J. et al. A safe operating space for humanity. Nature 461, 472–475 (2009).

    Article  CAS  Google Scholar 

  18. Transforming our World: the 2030 Agenda for Sustainable Development (United Nations, 2015).

  19. Transformations to Achieve the Sustainable Development Goals (IIASA & The World in 2050, 2018).

  20. Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).

    Article  CAS  Google Scholar 

  21. Stehfest, E., Van Vuuren, D. P., Kram, T. & Bouwman, A. F. Integrated Assessment of Global Environmental Change with IMAGE 3.0 - Model Description and Policy applications (PBL Netherlands Environmental Assessment Agency, 2014); https://models.pbl.nl/image/index.php/Welcome_to_IMAGE_3.0_Documentation

  22. Bijl, D. L. et al. A physically-based model of long-term food demand. Glob. Environ. Change 45, 47–62 (2017).

    Article  Google Scholar 

  23. Van Vuuren, D. P. et al. Energy, land-use and greenhouse gas emissions trajectories under a green growth paradigm. Glob. Environ. Change 42, 237–250 (2017).

    Article  Google Scholar 

  24. Schmidt, M. The Sankey diagram in energy and material flow management: part I: history. J. Ind. Ecol. 12, 82–94 (2008).

    Article  Google Scholar 

  25. Schmidt, M. The Sankey diagram in energy and material flow management—part II: methodology and current applications. J. Ind. Ecol. 12, 173–185 (2008).

    Article  Google Scholar 

  26. Curmi, E. et al. Visualising a stochastic model of Californian water resources using Sankey diagrams. Water Resour. Manag. 27, 3035–3050 (2013).

    Article  Google Scholar 

  27. Alexander, P. et al. Losses, inefficiencies and waste in the global food system. Agric. Syst. 153, 190–200 (2017).

    Article  Google Scholar 

  28. Bijl, D. L., Bogaart, P. W., Kram, T., de Vries, B. J. M. & van Vuuren, D. P. Long-term water demand for electricity, industry and households. Environ. Sci. Policy 55, 75–86 (2016).

    Article  Google Scholar 

  29. Smith, P. et al. Competition for land. Phil. Trans. R. Soc. B Biol. Sci. 365, 2941–2957 (2010).

    Article  Google Scholar 

  30. Daioglou, V., Stehfest, E., Wicke, B., Faaij, A. & van Vuuren, D. P. Projections of the availability and cost of residues from agriculture and forestry. GCB Bioenergy 8, 456–470 (2016).

    Article  Google Scholar 

  31. GEA The Global Energy Assessment: Toward a More Sustainable Future (Cambridge Univ. Press, 2012).

  32. Riahi, K. et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob. Environ. Change 42, 153–168 (2017).

    Article  Google Scholar 

  33. Tilman, D. & Clarke, M. Global diets link environmental sustainability and human health. Nature 515, 518–522 (2014).

    Article  CAS  Google Scholar 

  34. Smith, P. et al. How much land based greenhouse gas mitigation can be achieved without compromising food security and environmental goals? Glob. Change Biol. 19, 2285–2302 (2013).

    Article  Google Scholar 

  35. Alexander, P. et al. Drivers for global agricultural land use change: the nexus of diet, population, yield and bioenergy. Glob. Environ. Change 15, 138–147 (2015).

    Article  Google Scholar 

  36. Stehfest, E. et al. Climate benefits of changing diet. Clim. Change 95, 83–102 (2009).

    Article  CAS  Google Scholar 

  37. Bijl, D. L. et al. A physically-based model of long-term food demand. Glob. Environ. Change 45, 47–62 (2017).

    Article  Google Scholar 

  38. Food, Planet, Health. Healthy Diets from Sustainable Food Systems (The EAT-Lancet Commission, 2019); https://go.nature.com/2NDRXJ6

  39. Leahy, E., Lyons, S. & Tol, R. An Estimate of the Number of Vegetarians in the World ESRI Working Paper 340 (Economic and Social Research Institute, 2010).

  40. Röös, E. et al. Protein futures for Western Europe: potential land use and climate impacts in 2050. Reg. Environ. Change 17, 367–377 (2017).

    Article  Google Scholar 

  41. Neumann, K. & Verburg, P. H. & Stehfest, E. & Müller, C. The yield gap of global grain production: a spatial analysis. Agric. Syst. 103, 316–326 (2010).

    Article  Google Scholar 

  42. Rosegrant, M. W. et al. Agriculture at a Crossroads: Global Report (eds McIntyre, B. D. et al.) (Island Press, 2009).

  43. Mueller, N. D. X. et al. Closing yield gaps through nutrient and water management. Nature 490, 254–257 (2012).

    Article  CAS  Google Scholar 

  44. Gustavsson, J., Cederberg, C., Sonesson, U., van Otterdijk, R. & Meybeck, A. Global Food Losses and Food Waste (FAO, 2011).

  45. Clarke, L. et al. in Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) 414–510 (Cambridge Univ. Press, 2014).

  46. Hejazi, M. I. et al. 21st century United States emissions mitigation could increase water stress more than the climate change it is mitigating. Proc. Natl Acad. Sci. USA 112, 10635–10640 (2015).

    Article  CAS  Google Scholar 

  47. Engel, E. Die productions- und consumtionsverhältnisse des Königreichs Sachsen. Z. Stat. Bur. Konig. Sachsischen Min. Inner. 8–9, 28–29 (1857).

    Google Scholar 

  48. Daioglou, V., van Ruijven, B. J. & van Vuuren, D. P. Model projections for household energy use in developing countries. Energy 37, 601–615 (2012).

    Article  Google Scholar 

  49. Gustavsson, J., Cederberg, C., Sonesson, U. & Emanuelsson, A. The Methodology of the FAO Study: Global Food Losses and Food Waste – Extent, Causes and Prevention (SIK—The Swedish Institute for Food and Biotechnology, 2013).

  50. Van Vuuren, D. P. et al. Stabilizing greenhouse gas concentrations at low levels: an assessment of reduction strategies and costs. Clim. Change 81, 119–159 (2007).

    Article  CAS  Google Scholar 

  51. Girod, B., van Vuuren, D. P. & Deetman, S. Global travel within the 2 °C climate target. Energy Policy 45, 152–166 (2012).

    Article  Google Scholar 

  52. Van Ruijven, B. J. et al. Long-term model-based projections of energy use and CO2 emissions from the global steel and cement industries. Resour. Conserv. Recy. 112, 15–36 (2016).

    Article  Google Scholar 

  53. Bondeau, A. et al. Modelling the role of agriculture for the 20th century global terrestrial carbon balance. Glob. Change Biol. 13, 679–706 (2007).

    Article  Google Scholar 

  54. Gerten, D. Asynchronous exposure to global warming: freshwater resources and terrestrial ecosystems. Environ. Res. Lett. 8, 034032 (2013).

    Article  Google Scholar 

  55. Meinshausen, M., Raper, S. C. B. & Wigley, T. M. L. Emulating coupled atmosphere–ocean and carbon cycle models with a simpler model, MAGICC6—part 1: model description and calibration. Atmos. Chem. Phys. 11, 1417–1456 (2011).

    Article  CAS  Google Scholar 

  56. Fricko, O. et al. The marker quantification of the Shared Socioeconomic Pathway 2: a middle-of-the-road scenario for the 21st century. Glob. Environ. Change 42, 251–267 (2017).

    Article  Google Scholar 

  57. Alexandratos, N. & Bruinsma, J. World Agriculture Towards 2030/2050: The 2012 Revision (UN Food and Agriculture Organization, 2012).

  58. World Energy Outlook 2015 (International Energy Agency, 2015).

  59. Willett, W. C. & Skerrett, P. J. Eat, Drink, and Be Healthy: The Harvard Medical School Guide to Healthy Eating (Free Press, 2005).

  60. Kummu, M. et al. Lost food, wasted resources: global food supply chain losses and their impacts on freshwater, cropland, and fertiliser use. Sci. Total Environ. 438, 477–489 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research presented in this Analysis benefited from funding under the European Union’s Horizon 2020 research and innovation programme, under grant agreement no 689150 SIM4NEXUS and the PICASSO project (EU ERC, contract 819566).

Author information

Authors and Affiliations

Authors

Contributions

D.P.V.V. and D.L.B. designed the experiments. All authors contributed to the scenario analysis and the writing of the paper.

Corresponding author

Correspondence to Detlef P. Van Vuuren.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–3, Table 1 and references.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Vuuren, D.P., Bijl, D.L., Bogaart, P. et al. Integrated scenarios to support analysis of the food–energy–water nexus. Nat Sustain 2, 1132–1141 (2019). https://doi.org/10.1038/s41893-019-0418-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41893-019-0418-8

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene