Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Biodiversity’s contributions to sustainable development

Abstract

International concern to develop sustainably challenges us to act upon the inherent links between our economy, society and environment, and is leading to increasing acknowledgement of biodiversity’s importance. This Review discusses the breadth of ways in which biodiversity can support sustainable development. It uses the Sustainable Development Goals (SDGs) as a basis for exploring scientific evidence of the benefits delivered by biodiversity. It focuses on papers that provide examples of how biodiversity components (that is, ecosystems, species and genes) directly deliver benefits that may contribute to the achievement of individual SDGs. It also considers how biodiversity’s direct contributions to fulfilling some SDGs may indirectly support the achievement of other SDGs to which biodiversity does not contribute directly. How the attributes (for example, diversity, abundance or composition) of biodiversity components influence the benefits delivered is also presented, where described by the papers reviewed. While acknowledging potential negative impacts and trade-offs between different benefits, the study concludes that biodiversity may contribute to fulfilment of all SDGs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Country groupings by relative levels of biodiversity intactness and development.

Base map: Esri, DeLorme Publishing Company, Inc.

Fig. 2: A summary illustration of our examples of the ways that biodiversity contributes to the SDGs.

United Nations (UN/SDG).

Similar content being viewed by others

References

  1. World Commission on Environment and Development Our Common Future (Oxford Univ. Press, 1987).

  2. Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012). A review of two decades of research on how biodiversity loss influences ecosystem functions and the provision of goods and services.

    Article  CAS  Google Scholar 

  3. Norström, A. V. et al. Three necessary conditions for establishing effective Sustainable Development Goals in the Anthropocene. Ecol. Soc. 19, 8 (2014).

    Article  Google Scholar 

  4. Costanza, R. et al. Twenty years of ecosystem services: how far have we come and how far do we still need to go? Ecosyst. Serv. 28, 1–16 (2017).

    Article  Google Scholar 

  5. Blicharska, M. et al. Shades of grey challenge practical application of the Cultural Ecosystem Services concept. Ecosyst. Serv. 23, 55–70 (2017).

    Article  Google Scholar 

  6. Biodiversity and Sustainable Development: Technical Note (UNEP, 2016).

  7. Note of Subsidiary Body on Scientific, Technical and Technological Advice Twenty-first Meeting: Biodiversity and the 2030 Agenda for Sustainable Development (SBSTTA, 2017).

  8. Wood, S. L. R. et al. Distilling the role of ecosystem services in the Sustainable Development Goals. Ecosyst. Serv. 29, 70–82 (2018).

    Article  Google Scholar 

  9. Schultz, M., Tyrrell, T. D. & Ebenhard, T. The 2030 Agenda and Ecosystems - A Discussion Paper on the Links between the Aichi Biodiversity Targets and the Sustainable Development Goals (SwedBio at Stockholm Resilience Centre, 2016).

  10. Summary for Policymakers of the Regional Assessment Report on Biodiversity and Ecosystem Services for Europe and Central Asia of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES, 2018).

  11. Summary for Policymakers of the Regional Assessment Report on Biodiversity and Ecosystem Services for Africa of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES, 2018).

  12. Summary for Policymakers of the Regional Assessment Report on Biodiversity and Ecosystem Services for the Americas of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES, 2018).

  13. Summary for Policymakers of the Regional Assessment Report on Biodiversity and Ecosystem Services for Asia and the Pacific of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES, 2018).

  14. Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES, 2019).

  15. Sachs, J. D. et al. Biodiversity conservation and the Millennium Development Goals. Science 325, 1502–1503 (2009).

    Article  CAS  Google Scholar 

  16. Carrasco, L. R., Chan, J., McGrath, F. L. & Nghiem, L. T. P. Biodiversity conservation in a telecoupled world. Ecol. Soc. 22, 24 (2017).

    Article  Google Scholar 

  17. Liu, J. An integrated framework for achieving Sustainable Development Goals around the world. Ecol. Econ. Soc. INSEE J. 1, 11–17 (2018). A study introducing an integrated coupling framework for achieving the Sustainable Development Goals.

    Google Scholar 

  18. Syrbe, R.-U. & Walz, U. Spatial indicators for the assessment of ecosystem services: Providing, benefiting and connecting areas and landscape metrics. Ecol. Indic. 21, 80–88 (2012).

    Article  Google Scholar 

  19. Ziter, C., Graves, R. A. & Turner, M. G. How do land-use legacies affect ecosystem services in United States cultural landscapes? Landsc. Ecol. 32, 2205–2218 (2017).

    Article  Google Scholar 

  20. O’Neill, B. C. et al. IPCC reasons for concern regarding climate change risks. Nat. Clim. Change 7, 28–37 (2017).

    Article  Google Scholar 

  21. Essl, F. et al. Historical legacies accumulate to shape future biodiversity in an era of rapid global change. Divers. Distrib. 21, 534–547 (2015).

    Article  Google Scholar 

  22. Raudsepp-Hearne, C. et al. Untangling the environmentalist’s paradox: why is human well-being increasing as ecosystem services degrade? Bioscience 60, 576–589 (2010).

    Article  Google Scholar 

  23. Gaston, K. J. Global patterns in biodiversity. Nature 405, 220–227 (2000).

    Article  CAS  Google Scholar 

  24. Mayer, A. L., Kauppi, P. E., Angelstam, P. K., Zhang, Y. & Tikka, P. M. Importing timber, exporting ecological impact. Science 308, 359–360 (2005).

    Article  CAS  Google Scholar 

  25. Human Development Report 2016: Human Development for Everyone (United Nations Development Programme, 2016).

  26. Scholes, R. J. & Biggs, R. A biodiversity intactness index. Nature 434, 45–49 (2005).

    Article  CAS  Google Scholar 

  27. Lenzen, M. et al. International trade drives biodiversity threats in developing nations. Nature 486, 109–112 (2012). A global analysis of the threats posed to biodiversity by international trade.

    Article  CAS  Google Scholar 

  28. Moran, D., Petersone, M. & Verones, F. On the suitability of input output analysis for calculating product-specific biodiversity footprints. Ecol. Indic. 60, 192–201 (2016).

    Article  Google Scholar 

  29. Angelsen, A. et al. Environmental income and rural livelihoods: a global-comparative analysis. World Dev. 64, S12–S28 (2014).

    Article  Google Scholar 

  30. Abdullah, A. N. M., Stacey, N., Garnett, S. T. & Myers, B. Economic dependence on mangrove forest resources for livelihoods in the Sundarbans, Bangladesh. Forest Policy Econ. 64, 15–24 (2016).

    Article  Google Scholar 

  31. Keesing, F. et al. Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature 468, 647–652 (2010). A comprehensive review of the evidence that biodiversity loss affects the transmission of infectious diseases.

    Article  CAS  Google Scholar 

  32. Hartig, T., Mang, M. & Evans, G. W. Restorative effects of natural-environment experiences. Environ. Behav. 23, 3–26 (1991).

    Article  Google Scholar 

  33. Ulrich, R. S. View through a window may influence recovery from surgery. Science 224, 420–421 (1984).

    Article  CAS  Google Scholar 

  34. van den Bosch, M. & Sang, A. O. Urban natural environments as nature-based solutions for improved public health - a systematic review of reviews. Environ. Res. 158, 373–384 (2017). A systematic review of the health effects of nature-based solutions.

    Article  CAS  Google Scholar 

  35. Veitch, J. et al. Park availability and physical activity, TV time, and overweight and obesity among women: findings from Australia and the United States. Health Place 38, 96–102 (2016).

    Article  Google Scholar 

  36. Hanski, I. et al. Environmental biodiversity, human microbiota, and allergy are interrelated. Proc. Natl Acad. Sci. USA 109, 8334–8339 (2012).

    Article  CAS  Google Scholar 

  37. Feng, X. Q. & Astell-Burt, T. Is neighborhood green space protective against associations between child asthma, neighborhood traffic volume and perceived lack of area safety? Multilevel analysis of 4447 Australian children. Int. J. Environ. Res. Public Health 14, 543 (2017).

    Article  Google Scholar 

  38. Cipriani, J. et al. A systematic review of the effects of horticultural therapy on persons with mental health conditions. Occup. Ther. Ment. Health 33, 47–69 (2017).

    Article  Google Scholar 

  39. Bonan, G. B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).

    Article  CAS  Google Scholar 

  40. Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017). A study identifying and quantifying nature-based solutions to climate change.

    Article  CAS  Google Scholar 

  41. Johnson, C. N. et al. Biodiversity losses and conservation responses in the Anthropocene. Science 356, 270–274 (2017).

    Article  CAS  Google Scholar 

  42. Gamfeldt, L. et al. Higher levels of multiple ecosystem services are found in forests with more tree species. Nat. Commun. 4, 1430 (2013).

    Article  CAS  Google Scholar 

  43. Liu, C. L. C., Kuchma, O. & Krutovsky, K. V. Mixed-species versus monocultures in plantation forestry: development, benefits, ecosystem services and perspectives for the future. Glob. Ecol. Conserv. 15, e00419 (2018).

    Article  Google Scholar 

  44. Jones, H. P., Hole, D. G. & Zavaleta, E. S. Harnessing nature to help people adapt to climate change. Nat. Clim. Change 2, 504–509 (2012).

    Article  Google Scholar 

  45. Pramova, E., Locatelli, B., Djoudi, H. & Somorin, O. A. Forests and trees for social adaptation to climate variability and change. WIREs Clim. Change 3, 581–596 (2012).

    Article  Google Scholar 

  46. Bullock, A. & Acreman, M. The role of wetlands in the hydrological cycle. Hydrol. Earth Syst. Sci. 7, 358–389 (2003).

    Article  Google Scholar 

  47. Farley, K. A., Jobbágy, E. G. & Jackson, R. B. Effects of afforestation on water yield: a global synthesis with implications for policy. Glob. Change Biol. 11, 1565–1576 (2005).

    Article  Google Scholar 

  48. Thomas, H. & Nisbet, T. An assessment of the impact of floodplain woodland on flood flows. Water Environ. J. 21, 114–126 (2007).

    Article  Google Scholar 

  49. Quinton, J. N., Edwards, G. M. & Morgan, R. P. C. The influence of vegetation species and plant properties on runoff and soil erosion: results from a rainfall simulation study in south east Spain. Soil Use Manag. 13, 143–148 (1997).

    Article  Google Scholar 

  50. Gedan, K. B., Kirwan, M. L., Wolanski, E., Barbier, E. B. & Silliman, B. R. The present and future role of coastal wetland vegetation in protecting shorelines: answering recent challenges to the paradigm. Clim. Change 106, 7–29 (2011).

    Article  Google Scholar 

  51. Brandon, C. M., Woodruff, J. D., Orton, P. M. & Donnelly, J. P. Evidence for elevated coastal vulnerability following large-scale historical oyster bed harvesting. Earth Surf. Process. Landf. 41, 1136–1143 (2016).

    Article  Google Scholar 

  52. Ouyang, X. G., Lee, S. Y., Connolly, R. M. & Kainz, M. J. Spatially-explicit valuation of coastal wetlands for cyclone mitigation in Australia and China. Sci. Rep. 8, 3035 (2018).

    Article  CAS  Google Scholar 

  53. Nawaz, R., McDonald, A. & Postoyko, S. Hydrological performance of a full-scale extensive green roof located in a temperate climate. Ecol. Eng. 82, 66–80 (2015).

    Article  Google Scholar 

  54. Brandao, C., Cameira, M. D., Valente, F., de Carvalho, R. C. & Paco, T. A. Wet season hydrological performance of green roofs using native species under Mediterranean climate. Ecol. Eng. 102, 596–611 (2017).

    Article  Google Scholar 

  55. Vijayaraghavan, K. Green roofs: a critical review on the role of components, benefits, limitations and trends. Renew. Sustain. Energy Rev. 57, 740–752 (2016).

    Article  Google Scholar 

  56. Wong, N. H. et al. The effects of rooftop garden on energy consumption of a commercial building in Singapore. Energy Build. 35, 353–364 (2003).

    Article  Google Scholar 

  57. Getter, K. L. & Rowe, D. B. The role of extensive green roofs in sustainable development. Hortscience 41, 1276–1285 (2006).

    Article  Google Scholar 

  58. Guo, Z. W., Zhang, L. & Li, Y. M. Increased dependence of humans on ecosystem services and biodiversity. PloS ONE 5, e13113 (2010).

    Article  CAS  Google Scholar 

  59. Balmford, A. et al. A global perspective on trends in nature-based tourism. PloS Biol. 7, e1000144 (2009).

    Article  CAS  Google Scholar 

  60. Brink, E. et al. Cascades of green: a review of ecosystem-based adaptation in urban areas. Glob. Environ. Change-Hum. Policy Dimens. 36, 111–123 (2016).

    Article  Google Scholar 

  61. Trepel, M. Assessing the cost-effectiveness of the water purification function of wetlands for environmental planning. Ecol. Complex. 7, 320–326 (2010).

    Article  Google Scholar 

  62. Shen, Y. Q., Liao, X. C. & Yin, R. S. Measuring the socioeconomic impacts of China’s Natural Forest Protection Program. Environ. Dev. Econ. 11, 769–788 (2006).

    Article  Google Scholar 

  63. Thrupp, L. A. Linking agricultural biodiversity and food security: the valuable role of agrobiodiversity for sustainable agriculture. Int. Aff. 76, 283–297 (2000).

    Article  Google Scholar 

  64. Duffy, J. E., Godwin, C. M. & Cardinale, B. J. Biodiversity effects in the wild are common and as strong as key drivers of productivity. Nature 549, 261–265 (2017).

    Article  CAS  Google Scholar 

  65. Worm, B. et al. Impacts of biodiversity loss on ocean ecosystem services. Science 314, 787–790 (2006). A global analysis revealing the importance of biodiversity for the productivity and stability of marine ecosystems.

    Article  CAS  Google Scholar 

  66. Winfree, R. et al. Species turnover promotes the importance of bee diversity for crop pollination at regional scales. Science 359, 791–793 (2018).

    Article  CAS  Google Scholar 

  67. Klein, A. M. et al. Importance of pollinators in changing landscapes for world crops. Proc. Royal Soc. B-Biol. Sci. 274, 303–313 (2007).

    Article  Google Scholar 

  68. O’Bryan, C. J. et al. The contribution of predators and scavengers to human well-being. Nat. Ecol. Evol. 2, 229–236 (2018). A comprehensive review of the role of predators in providing a range of benefits for people.

    Article  Google Scholar 

  69. Haddad, N. M., Crutsinger, G. M., Gross, K., Haarstad, J. & Tilman, D. Plant diversity and the stability of foodwebs. Ecol. Lett. 14, 42–46 (2011).

    Article  Google Scholar 

  70. Chaplin-Kramer, R. & Kremen, C. Pest control experiments show benefits of complexity at landscape and local scales. Ecol. Appl. 22, 1936–1948 (2012).

    Article  Google Scholar 

  71. Bale, J. S., van Lenteren, J. C. & Bigler, F. Biological control and sustainable food production. Philos. Trans. Royal Soc. B-Biol. Sci. 363, 761–776 (2008).

    Article  CAS  Google Scholar 

  72. Motlhanka, D. M. & Makhabu, S. W. Medicinal and edible wild fruit plants of Botswana as emerging new crop opportunities. J. Med. Plants Res. 5, 1836–1842 (2011).

    Google Scholar 

  73. Jackson, L. et al. Biodiversity and agricultural sustainagility: from assessment to adaptive management. Curr. Opin. Environ. Sustain. 2, 80–87 (2010).

    Article  Google Scholar 

  74. Lachat, C. et al. Dietary species richness as a measure of food biodiversity and nutritional quality of diets. Proc. Natl Acad. Sci. USA 115, 127–132 (2018).

    Article  CAS  Google Scholar 

  75. Flint, H. J., Scott, K. P., Louis, P. & Duncan, S. H. The role of the gut microbiota in nutrition and health. Nat. Rev. Gastroenterol. Hepatol. 9, 577–589 (2012).

    Article  CAS  Google Scholar 

  76. Belkaid, Y. & Hand, T. W. Role of the microbiota in immunity and inflammation. Cell 157, 121–141 (2014).

    Article  CAS  Google Scholar 

  77. Atanasov, A. G. et al. Discovery and resupply of pharmacologically active plant-derived natural products: a review. Biotechnol. Adv. 33, 1582–1614 (2015).

    Article  CAS  Google Scholar 

  78. Alves, R. R. N. & Alves, H. N. The faunal drugstore: animal-based remedies used in traditional medicines in Latin America. J. Ethnobiol. Ethnomed. 7, 9 (2011).

    Article  Google Scholar 

  79. Golden, C. D., Fernald, L. C. H., Brashares, J. S., Rasolofoniaina, B. J. R. & Kremen, C. Benefits of wildlife consumption to child nutrition in a biodiversity hotspot. Proc. Natl Acad. Sci. USA 108, 19653–19656 (2011).

    Article  CAS  Google Scholar 

  80. Liu, L., Guan, D. S. & Peart, M. R. The morphological structure of leaves and the dust-retaining capability of afforested plants in urban Guangzhou, South China. Environ. Sci. Pollut. Res. 19, 3440–3449 (2012).

    Article  Google Scholar 

  81. Fuller, R. A., Irvine, K. N., Devine-Wright, P., Warren, P. H. & Gaston, K. J. Psychological benefits of greenspace increase with biodiversity. Biol. Lett. 3, 390–394 (2007).

    Article  Google Scholar 

  82. Hedblom, M., Heyman, E., Antonsson, H. & Gunnarsson, B. Bird song diversity influences young people’s appreciation of urban landscapes. Urban For. Urban Green. 13, 469–474 (2014).

    Article  Google Scholar 

  83. Cameron, R. W. F., Taylor, J. & Emmett, M. A Hedera green facade - energy performance and saving under different maritime-temperate, winter weather conditions. Build. Environ. 92, 111–121 (2015).

    Article  Google Scholar 

  84. Lurie-Luke, E. Product and technology innovation: what can biomimicry inspire? Biotechnol. Adv. 32, 1494–1505 (2014).

    Article  Google Scholar 

  85. Caracciolo, A. B., Topp, E. & Grenni, P. Pharmaceuticals in the environment: biodegradation and effects on natural microbial communities. A review. J. Pharm. Biomed. Anal. 106, 25–36 (2015).

    Article  CAS  Google Scholar 

  86. Megharaj, M., Ramakrishnan, B., Venkateswarlu, K., Sethunathan, N. & Naidu, R. Bioremediation approaches for organic pollutants: a critical perspective. Environ. Int. 37, 1362–1375 (2011).

    Article  CAS  Google Scholar 

  87. Six, J., Frey, S. D., Thiet, R. K. & Batten, K. M. Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Sci. Soc. Am. J. 70, 555–569 (2006).

    Article  CAS  Google Scholar 

  88. Martin, T. L., Trevors, J. T. & Kaushik, N. K. Soil microbial diversity, community structure and denitrification in a temperate riparian zone. Biodivers. Conserv. 8, 1057–1078 (1999).

    Article  Google Scholar 

  89. Cardinale, B. J. Biodiversity improves water quality through niche partitioning. Nature 472, 86–89 (2011).

    Article  CAS  Google Scholar 

  90. Kulshreshtha, A., Agrawal, R., Barar, M. & Saxena, S. A review on bioremediation of heavy metals in contaminated water. IOSR J. Environ. Sci. Toxicol. Food Technol. 8, 44–50 (2014).

    Article  Google Scholar 

  91. Hewett, D. G. The colonization of sand dunes after stabilization with Marram Grass (Ammophila Arenaria). J. Ecol. 58, 653–668 (1970).

    Article  Google Scholar 

  92. Di Minin, E., Fraser, I., Slotow, R. & MacMillan, D. C. Understanding heterogeneous preference of tourists for big game species: implications for conservation and management. Animal Conserv. 16, 249–258 (2013).

    Article  Google Scholar 

  93. Hoffmann, A. A. & Sgro, C. M. Climate change and evolutionary adaptation. Nature 470, 479–485 (2011).

    Article  CAS  Google Scholar 

  94. Ruiz, K. B. et al. Quinoa biodiversity and sustainability for food security under climate change. A review. Agron. Sustain. Dev. 34, 349–359 (2014).

    Article  Google Scholar 

  95. Muñoz, N., Liu, A., Kan, L., Li, M.-W. & Lam, H.-M. Potential uses of wild germplasms of grain legumes for crop improvement. Int. J. Mol. Sci. 18, 328 (2017).

    Article  CAS  Google Scholar 

  96. Burke, M. B., Lobell, D. B. & Guarino, L. Shifts in African crop climates by 2050, and the implications for crop improvement and genetic resources conservation. Glob. Environ. Change-Hum. Policy Dimens. 19, 317–325 (2009).

    Article  Google Scholar 

  97. Arrieta, J. M., Arnaud-Haond, S. & Duarte, C. M. What lies underneath: conserving the oceans’ genetic resources. Proc. Natl Acad. Sci. USA 107, 18318–18324 (2010).

    Article  CAS  Google Scholar 

  98. Swanson, T. The reliance of northern economies on southern biodiversity: biodiversity as information. Ecol. Econ. 17, 1–8 (1996).

    Article  Google Scholar 

  99. David, B., Wolfender, J. L. & Dias, D. A. The pharmaceutical industry and natural products: historical status and new trends. Phytochem. Rev. 14, 299–315 (2015).

    Article  CAS  Google Scholar 

  100. Duncan, G. J., Brooksgunn, J. & Klebanov, P. K. Economic deprivation and early-childhood developments. Child Dev. 65, 296–318 (1994).

    Article  CAS  Google Scholar 

  101. Victora, C. G. et al. Maternal and child undernutrition 2 - Maternal and child undernutrition: consequences for adult health and human capital. Lancet 371, 340–357 (2008).

    Article  CAS  Google Scholar 

  102. Goodman, J., Hurwitz, M., Park, J. & Smith, J. Heat and Learning (National Bureau of Economic Research, 2018).

  103. Cole, L. B., McPhearson, T., Herzog, C. P. & Russ, A. in Urban Environmental Education Review (eds Russ, A. & Krasny, M. E.) 261–270 (Cornell Univ. Press, 2017).

  104. Kevany, K. & Huisingh, D. A review of progress in empowerment of women in rural water management decision-making processes. J. Clean. Prod. 60, 53–64 (2013).

    Article  Google Scholar 

  105. Patria, H. D. Uncultivated biodiversity in women’s hand: how to create food sovereignty. Asian J. Women’s Stud. 19, 148–161 (2013).

    Article  Google Scholar 

  106. Adekola, O., Mitchell, G. & Grainger, A. Inequality and ecosystem services: the value and social distribution of Niger Delta wetland services. Ecosyst. Serv. 12, 42–54 (2015).

    Article  Google Scholar 

  107. Bogar, S. & Beyer, K. M. Green space, violence, and crime: a systematic review. Trauma Violence Abuse 17, 160–171 (2016).

    Article  Google Scholar 

  108. Schleussner, C. F., Donges, J. F., Donner, R. V. & Schellnhuber, H. J. Armed-conflict risks enhanced by climate-related disasters in ethnically fractionalized countries. Proc. Natl Acad. Sci. USA 113, 9216–9221 (2016).

    Article  CAS  Google Scholar 

  109. Wischnath, G. & Buhaug, H. Rice or riots: on food production and conflict severity across India. Political Geogr. 43, 6–15 (2014).

    Article  Google Scholar 

  110. Aspergis, N. Education and democracy: new evidence from 161 countries. Econ. Model. 71, 59–67 (2018).

    Article  Google Scholar 

  111. McCoy, D., Chigudu, S. & Tillmann, T. Framing the tax and health nexus: a neglected aspect of public health concern. Health Econ. Policy Law 12, 179–194 (2017).

    Article  Google Scholar 

  112. Truong, C., Trück, S. & Mathew, S. Managing risks from climate impacted hazards – the value of investment flexibility under uncertainty. Eur. J. Oper. Res. 269, 132–145 (2018).

    Article  Google Scholar 

  113. Lectard, P. & Rougier, E. Can developing countries gain from defying comparative advantage? Distance to comparative advantage, export diversification and sophistication, and the dynamics of specialization. World Dev. 102, 90–110 (2018).

    Article  Google Scholar 

  114. Ehrlich, P. R. & Ehrlich, A. H. The population bomb revisited. Electron. J. Sustain. Dev 1, 5–13 (2009).

    Google Scholar 

  115. NRC The State of Canada’s Forests. Annual Report 2017 (Natural Resources Canada, Canadian Forest Service, 2017).

  116. Rackham, O. Ancient Woodland: Its History, Vegetation and Uses in England (Castlepoint Press, 1983).

  117. Forestry Statistics 2017 (Forestry Commission, 2017).

  118. Mace, G. M. et al. Aiming higher to bend the curve of biodiversity loss. Nat. Sustain. 1, 448–451 (2018).

    Article  Google Scholar 

  119. Scharlemann, J. P. W. et al. Global Goals Mapping: The Environment-human Landscape. A Contribution Towards the NERC, The Rockefeller Foundation and ESRC Initiative, Towards a Sustainable Earth: Environment-human Systems and the UN Global Goals (Sussex Sustainability Research Programme, University of Sussex and UN Environment World Conservation Monitoring Centre, 2016).

  120. Wolosin, M. Large-scale Forestation for Climate Mitigation: Lessons from South Korea, China, and India (Climate and Land Use Alliance, 2017).

  121. Smithers, R. J., Blicharska, M. & Laurance, W. F. Biodiversity boundaries. Science 353, 1108 (2016).

    Google Scholar 

  122. Newbold, T. et al. Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Science 353, 288–291 (2016).

    Article  CAS  Google Scholar 

  123. Wilson, E. O. Biophilia (Harvard Univ. Press, 1986).

  124. Roe, D. et al. Which components or attributes of biodiversity influence which dimensions of poverty? Environ. Evid. 3, 3 (2014).

    Article  Google Scholar 

  125. Tanaka, N., Sasaki, Y., Mowjood, M. I. M., Jinadasa, K. B. S. N. & Homchuen, S. Coastal vegetation structures and their functions in tsunami protection: experience of the recent Indian Ocean tsunami. Landsc. Ecol. Eng. 33, 33–45 (2007).

    Article  Google Scholar 

  126. Mishra, A. et al. Building ex ante resilience of disaster-exposed mountain communities: drawing insights from the Nepal earthquake recovery. Int. J. Disast. Risk Reduct. 22, 167–178 (2017).

    Article  Google Scholar 

  127. von Wettberg, E. J. B. et al. Ecology and genomics of an important crop wild relative as a prelude to agricultural innovation. Nat. Commun. 9, 649 (2018).

    Article  CAS  Google Scholar 

  128. Ricketts, T. H., Daily, G. C., Ehrlich, P. R. & Michener, C. D. Economic value of tropical forest to coffee production. Proc. Natl Acad. Sci. USA 101, 12579–12582 (2004).

    Article  CAS  Google Scholar 

  129. Wall, D. H., Nielsen, U. N. & Six, J. Soil biodiversity and human health. Nature 528, 69–76 (2015).

    Article  CAS  Google Scholar 

  130. Beckett, K. P., Freer-Smith, P. H. & Taylor, G. Particulate pollution capture by urban trees: effect of species and windspeed. Glob. Change Biol. 6, 995–1003 (2000).

    Article  Google Scholar 

  131. Rahman, M. A., Armson, D. & Ennos, A. R. A comparison of the growth and cooling effectiveness of five commonly planted urban tree species. Urban Ecosyst. 18, 371–389 (2015).

    Article  Google Scholar 

  132. Santos, A. et al. The role of forest in mitigating the impact of atmospheric dust pollution in a mixed landscape. Environ. Sci. Pollut. Res. 24, 12038–12048 (2017).

    Article  Google Scholar 

  133. Detweiler, M. B. et al. Horticultural therapy: a pilot study on modulating cortisol levels and indices of substance craving, posttraumatic stress disorder, depression, and quality of life in veterans. Altern. Ther. Health Med. 21, 36–41 (2015).

    Google Scholar 

  134. Taylor, M. S., Wheeler, B. W., White, M. P., Economou, T. & Osborne, N. J. Research note: Urban street tree density and antidepressant prescription rates—A cross-sectional study in London, UK. Landsc. Urban Plan. 136, 174–179 (2015).

    Article  Google Scholar 

  135. Johnson, C., Schweinhart, S. & Buffam, I. Plant species richness enhances nitrogen retention in green roof plots. Ecol. Appl. 26, 2130–2144 (2016).

    Article  Google Scholar 

  136. Meerburg, B. G. et al. Surface water sanitation and biomass production in a large constructed wetland in the Netherlands. Wetl. Ecol. Manag. 18, 463–470 (2010).

    Article  CAS  Google Scholar 

  137. Osborne, L. L. & Kovacic, D. A. Riparian vegetated buffer strips in water-quality restoration and stream management. Freshw. Biol. 29, 243–258 (1993).

    Article  Google Scholar 

  138. Verhoeven, J. T. A., Arheimer, B., Yin, C. & Hefting, M. M. Regional and global concerns over wetlands and water quality. Trends Ecol. Evol. 21, 96–103 (2006).

    Article  Google Scholar 

  139. Brauman, K. A., Freyberg, D. L. & Daily, G. C. Forest structure influences on rainfall partitioning and cloud interception: a comparison of native forest sites in Kona, Hawaii. Agric. For. Meteorol. 150, 265–275 (2010).

    Article  Google Scholar 

  140. Bailis, R., Drigo, R., Ghilardi, A. & Masera, O. The carbon footprint of traditional woodfuels. Nat. Clim. Change 5, 266–272 (2015).

    Article  CAS  Google Scholar 

  141. Elliott, L. G. et al. Establishment of a bioenergy-focused microalgal culture collection. Algal Res. 1, 102–113 (2012).

    Article  Google Scholar 

  142. Heinsoo, K., Melts, I., Sammul, M. & Holm, B. The potential of Estonian semi-natural grasslands for bioenergy production. Agric. Ecosyst. Environ. 137, 86–92 (2010).

    Article  CAS  Google Scholar 

  143. Dornburg, V. et al. Bioenergy revisited: key factors in global potentials of bioenergy. Energy Environ. Sci. 3, 258–267 (2010).

    Article  Google Scholar 

  144. Wang, Z. H., Zhao, X. X., Yang, J. C. & Song, J. Y. Cooling and energy saving potentials of shade trees and urban lawns in a desert city. Appl. Energy 161, 437–444 (2016).

    Article  Google Scholar 

  145. Palmer, C. & Di Falco, S. Biodiversity, poverty, and development. Oxf. Rev. Econ. Policy 28, 48–68 (2012).

    Article  Google Scholar 

  146. Tumusiime, D. M. & Vedeld, P. Can biodiversity conservation benefit local people? Costs and benefits at a strict protected area in Uganda. J. Sustain. For. 34, 761–786 (2015).

    Article  Google Scholar 

  147. Tzoulas, K. et al. Promoting ecosystem and human health in urban areas using Green Infrastructure: a literature review. Landsc. Urban Plan. 81, 167–178 (2007).

    Article  Google Scholar 

  148. Schilling, J. & Logan, J. Greening the Rust Belt: a green infrastructure model for right sizing America’s shrinking cities. J. Am. Plan. Assoc. 74, 451–466 (2008).

    Article  Google Scholar 

  149. Berardi, U., GhaffarianHoseini, A. H. & GhaffarianHoseini, A. State-of-the-art analysis of the environmental benefits of green roofs. Appl. Energy 115, 411–428 (2014).

    Article  Google Scholar 

  150. Charlesworth, S. M., Perales-Momparler, S., Lashford, C. & Warwick, F. The sustainable management of surface water at the building scale: preliminary results of case studies in the UK and Spain. J. Water Supply Res. Technol.-Aqua 62, 534–544 (2013).

    Article  Google Scholar 

  151. Vineyard, D. et al. Comparing green and grey infrastructure using life cycle cost and environmental impact: a rain garden case study in Cincinnati, OH. J. Am. Water Resour. Assoc. 51, 1342–1360 (2015).

    Article  Google Scholar 

  152. Dong, X., Guo, H. & Zeng, S. Y. Enhancing future resilience in urban drainage system: green versus grey infrastructure. Water Res. 124, 280–289 (2017).

    Article  CAS  Google Scholar 

  153. Renaud, F. G., Sudmeier-Rieux, K., Estrella, M. & Nehren, U. Ecosystem-based Disaster Risk Reduction and Adaptation in Practice (Springer, 2016).

  154. Hausmann, A., Slotow, R., Burns, J. K. & Di Minin, E. The ecosystem service of sense of place: benefits for human well-being and biodiversity conservation. Environ. Conserv. 43, 117–127 (2016).

    Article  Google Scholar 

  155. Blicharska, M. & Mikusiński, G. Incorporating social and cultural significance of large old trees in conservation policy. Conserv. Biol. 28, 1558–1567 (2014).

    Article  Google Scholar 

  156. Rotherham, I. D. Bio-cultural heritage and biodiversity: emerging paradigms in conservation and planning. Biodivers. Conserv. 24, 3405–3429 (2015).

    Article  Google Scholar 

  157. Bhagwat, S. A. & Rutte, C. Sacred groves: potential for biodiversity management. Front. Ecol. Environ. 4, 519–524 (2006).

    Article  Google Scholar 

  158. Kabisch, N., van den Bosch, M. & Lafortezza, R. The health benefits of nature-based solutions to urbanization challenges for children and the elderly - a systematic review. Environ. Res. 159, 362–373 (2017).

    Article  CAS  Google Scholar 

  159. Gunnarsson, B., Knez, I., Hedblom, M. & Sang, A. O. Effects of biodiversity and environment-related attitude on perception of urban green space. Urban Ecosyst. 20, 37–49 (2017).

    Article  Google Scholar 

  160. Nielsen, A. B., van den Bosch, M., Maruthaveeran, S. & van den Bosch, C. K. Species richness in urban parks and its drivers: a review of empirical evidence. Urban Ecosyst. 17, 305–327 (2014).

    Article  Google Scholar 

  161. Shanahan, D. F., Fuller, R. A., Bush, R., Lin, B. B. & Gaston, K. J. The health benefits of urban nature: how much do we need? BioScience 65, 476–485 (2015).

    Article  Google Scholar 

  162. McVittie, A., Cole, L., Wreford, A., Sgobbi, A. & Yordi, B. Ecosystem-based solutions for disaster risk reduction: lessons from European applications of ecosystem-based adaptation measures. Int. J. Disast. Risk Reduct. 32, 42–54 (2018).

    Article  Google Scholar 

  163. Salick, J. et al. Tibetan sacred sites conserve old growth trees and cover in the eastern Himalayas. Biodivers. Conserv. 16, 693–706 (2007).

    Article  Google Scholar 

  164. Aydin, S. et al. Aerobic and anaerobic fungal metabolism and Omics insights for increasing polycyclic aromatic hydrocarbons biodegradation. Fungal Biol. Rev. 31, 61–72 (2017).

    Article  Google Scholar 

  165. Ehlers, A., Worm, B. & Reusch, T. B. H. Importance of genetic diversity in eelgrass Zostera marina for its resilience to global warming. Mar. Ecol.-Prog. Ser. 355, 1–7 (2008).

    Article  Google Scholar 

  166. Wilmers, C. C. & Getz, W. M. Gray wolves as climate change buffers in Yellowstone. PloS Biol. 3, 571–576 (2005).

    Article  CAS  Google Scholar 

  167. Steffen, W. et al. Planetary boundaries: guiding human development on a changing planet. Science 347, 1259855 (2015).

    Article  CAS  Google Scholar 

  168. Stahel, W. R. The circular economy. Nature 531, 435–438 (2016).

    Article  CAS  Google Scholar 

  169. Burch-Brown, J. & Archer, A. In defence of biodiversity. Biol. Philos. 32, 969–997 (2017).

    Article  Google Scholar 

  170. Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).

    Article  CAS  Google Scholar 

  171. Shaw, J. D., Terauds, A., Riddle, M. J., Possingham, H. P. & Chown, S. L. Antarctica’s protected areas are inadequate, unrepresentative, and at risk. PloS Biol. 12, e1001888 (2014).

    Article  CAS  Google Scholar 

  172. Roe, D., Elliott, J., Sandbrook, C. & Walpole, M. in Biodiversity Conservation and Poverty Alleviation: Exploring the Evidence for a Link (eds Roe, D. et al.) 3–18 (Wiley-Blackwell, 2013).

  173. Redford, K. H. & Richter, B. D. Conservation of biodiversity in a world of use. Conserv. Biol. 13, 1246–1256 (1999).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

M.B. and R.J.S. conceived the Review and wrote the manuscript. M.B. undertook the literature search and was supported by R.J.S. in identifying relevant examples. G.M. undertook the analysis for Fig. 1. All authors contributed to ideas and editing.

Corresponding author

Correspondence to Malgorzata Blicharska.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Information sections 1–2, table and refs. 1–4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blicharska, M., Smithers, R.J., Mikusiński, G. et al. Biodiversity’s contributions to sustainable development. Nat Sustain 2, 1083–1093 (2019). https://doi.org/10.1038/s41893-019-0417-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41893-019-0417-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing