Environmental and health co-benefits for advanced phosphorus recovery


Worldwide food production is largely dependent on rock phosphate, a finite raw material used for the production of concentrated phosphorus fertilizers. With the aim to close the biogeochemical phosphorus cycle across regions and urban–rural systems, advanced phosphorus recovery applies thermochemical and precipitation techniques to transform locally available biogenic materials into concentrated phosphorus fertilizers. Due to insufficient insights into the consequential impacts of these circular processes, opportunities to align advanced phosphorus recovery with agricultural sustainability are still widely unknown. Here we show that environmental and health life cycle impacts are often lower for phosphorus fertilizers sourced from secondary raw materials than for rock phosphate-derived products, especially in areas of high livestock and population density. Including externalities from rock phosphate extraction and avoided current-day management of biogenic materials in the comparative product life cycle severely alters the cost assessment relative to an analysis that considers only internal costs from manufacturers’ production processes. Societal costs incurred for circular products derived from sewage sludge, manure and meat and bone meal are up to 81%, 50% and 10% lower than for rock-derived superphosphate, respectively. Even without accounting for rock phosphate depletion risks, short-term and local environmental and health co-benefits might underlie the societal cost effectiveness of advanced phosphorus recovery.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Schematic representation of methodological principles and selected pathways of the life cycle assessment that applies the production and use on land of 1 kg of bioavailable P in a concentrated P fertilizer as the functional unit.
Fig. 2: Rock phosphate depletion.
Fig. 3: Conventional life cycle costing.
Fig. 4: Environmental and health impacts.
Fig. 5: External and societal life cycle costs.

Data availability

The data supporting the findings of this study are available within the paper and its supplementary information files.


  1. 1.

    World Fertilizer Trends and Outlook to 2018 Report No. 9789251086926 (FAO, 2015).

  2. 2.

    Childers, D. L., Elser, J. J., Corman, J. & Edwards, M. Sustainability challenges of phosphorus and food: solutions from closing the human phosphorus cycle. BioScience 61, 117–124 (2011).

    Google Scholar 

  3. 3.

    Schoumans, O. F., Bouraoui, F., Kabbe, C., Oenema, O. & van Dijk, K. C. Phosphorus management in Europe in a changing world. Ambio 44, S180–S192 (2015).

    Google Scholar 

  4. 4.

    Herrera-Estrella, L. & López-Arredondo, D. Phosphorus: the underrated element for feeding the world. Trends Plant Sci. 21, 461–463 (2016).

    CAS  Google Scholar 

  5. 5.

    Elser, J. & Bennett, E. Phosphorus cycle: a broken biogeochemical cycle. Nature 478, 29–31 (2011).

    CAS  Google Scholar 

  6. 6.

    Cordell, D. & White, S. Life’s bottleneck: sustaining the world’s phosphorus for a food secure future. Annu. Rev. Environ. Resour. 39, 161–188 (2014).

    Google Scholar 

  7. 7.

    Willett, W. et al. Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 393, 447–492 (2019).

    Google Scholar 

  8. 8.

    Withers, P. J. A., Sylvester-Bradley, R., Jones, D. L., Healey, J. R. & Talboys, P. J. Feed the crop not the soil: rethinking phosphorus management in the food chain. Environ. Sci. Technol. 48, 6523–6530 (2014).

    CAS  Google Scholar 

  9. 9.

    Huygens, D., Saveyn, H., Tonini, D., Eder, P. & Delgado Sancho, L. Technical Proposals for Selected New Fertilising Materials under the Fertilising Products Regulation (Regulation (EU) 2019/1009): Process and Quality Criteria, and Assessment of Environmental and Market Impacts for Precipitated Phosphate Salts & Derivates, Thermal Oxidation Materials & Derivates and Pyrolysis & Gasification Materials (EU Publications, 2019).

  10. 10.

    Trimmer, J. T. & Guest, J. S. Recirculation of human-derived nutrients from cities to agriculture across six continents. Nat. Sustain. 1, 427–435 (2018).

    Google Scholar 

  11. 11.

    Berendes, D. M., Yang, P. J., Lai, A., Hu, D. & Brown, J. Estimation of global recoverable human and animal faecal biomass. Nat. Sustain. 1, 679–685 (2018).

    Google Scholar 

  12. 12.

    O’Rourke, D. The science of sustainable supply chains. Science 344, 1124–1127 (2014).

    Google Scholar 

  13. 13.

    Mehta, C. M., Khunjar, W. O., Nguyen, V., Tait, S. & Batstone, D. J. Technologies to recover nutrients from waste streams: a critical review. Crit. Rev. Environ. Sci. Technol. 45, 385–427 (2015).

    Google Scholar 

  14. 14.

    Mayer, B. K. et al. Total value of phosphorus recovery. Environ. Sci. Technol. 50, 6606–6620 (2016).

    CAS  Google Scholar 

  15. 15.

    MacDonald, G. K. et al. Guiding phosphorus stewardship for multiple ecosystem services. Ecosyst. Health Sustain. 2, e01251 (2016).

    Google Scholar 

  16. 16.

    Bradford-Hartke, Z., Lane, J., Lant, P. & Leslie, G. Environmental benefits and burdens of phosphorus recovery from municipal wastewater. Environ. Sci. Technol. 49, 8611–8622 (2015).

    CAS  Google Scholar 

  17. 17.

    Amann, A. et al. Environmental impacts of phosphorus recovery from municipal wastewater. Resour. Conserv. Recycl. 130, 127–139 (2018).

    Google Scholar 

  18. 18.

    Remy, C. & Kraus, F. in Phosphorus Recovery and Recycling (eds Ohtake, H. & Tsuneda, S.) Ch. 4 (Springer, 2019).

  19. 19.

    Styles, D. et al. Life cycle assessment of biofertilizer production and use compared with conventional liquid digestate management. Environ. Sci. Technol. 52, 7468–7476 (2018).

    CAS  Google Scholar 

  20. 20.

    Pradel, M. & Aissani, L. Environmental impacts of phosphorus recovery from a “product” life cycle assessment perspective: allocating burdens of wastewater treatment in the production of sludge-based phosphate fertilizers. Sci. Total Environ. 656, 55–69 (2019).

    CAS  Google Scholar 

  21. 21.

    Golroudbary, S. R., El Wali, M. & Kraslawski, A. Environmental sustainability of phosphorus recycling from wastewater, manure and solid wastes. Sci. Total Environ. 672, 515–524 (2019).

    CAS  Google Scholar 

  22. 22.

    Egle, L., Rechberger, H., Krampe, J. & Zessner, M. Phosphorus recovery from municipal wastewater: an integrated comparative technological, environmental and economic assessment of P recovery technologies. Sci. Total Environ. 571, 522–542 (2016).

    CAS  Google Scholar 

  23. 23.

    Nattorp, A., Remmen, K. & Remy, C. Cost assessment of different routes for phosphorus recovery from wastewater using data from pilot and production plants. Water Sci. Technol. 76, 413–424 (2017).

    CAS  Google Scholar 

  24. 24.

    Environmental Management—Life Cycle Assessment—Principles and Framework Report No. ISO 14040 (ISO, 2006).

  25. 25.

    Environmental Management—Life Cycle Assessment—Requirements and Guidelines Report No. ISO 14044 (ISO, 2006).

  26. 26.

    Huygens, D. & Saveyn, H. G. M. Agronomic efficiency of selected phosphorus fertilisers derived from secondary raw materials for European agriculture. A meta-analysis. Agron. Sustain. Dev. 38, 52 (2018).

  27. 27.

    Oenema, O. et al. Phosphorus fertilisers from by-products and wastes. In Proc. 717, International Fertiliser Society (eds Scott, P., Brightling, J. & Peace, J.) 4–54 (International Fertiliser Society, 2012).

  28. 28.

    Kratz, S., Haneklaus, S. & Schnug, E. Chemical solybility and agricultural performance of P-containing recycling fertilisers. Landbouwforsch. Volk. 4, 227–240 (2010).

    Google Scholar 

  29. 29.

    Roy, R. N., Finck, A., Blair, G. J. & Tandon, H. L. S. Plant Nutrition for Food Security: A Guide for Integrated Nutrient Management (FAO, 2006).

  30. 30.

    Sewage Sludge Production and Disposal from Urban Wastewater (Eurostat, 2019).

  31. 31.

    A One-to-One Comparison of the Naturland Standards with the EU Organic Regulation (Naturland, 2018).

  32. 32.

    van Dijk, K. C., Lesschen, J. P. & Oenema, O. Phosphorus flows and balances of the European Union member states. Sci. Total Environ. 542, 1078–1093 (2016).

    Google Scholar 

  33. 33.

    Linderholm, K., Tillman, A.-M. & Mattsson, J. E. Life cycle assessment of phosphorus alternatives for Swedish agriculture. Resour. Conserv. Recycl. 66, 27–39 (2012).

    Google Scholar 

  34. 34.

    Zhang, W.-f. et al. New technologies reduce greenhouse gas emissions from nitrogenous fertilizer in China. Proc. Natl Acad. Sci. USA 110, 8375–8380 (2013).

    CAS  Google Scholar 

  35. 35.

    Brentrup, F. & Pallière, C. Energy Efficiency and Greenhouse Gas Emissions in European Nitrogen Fertilizer Production and Use (International Fertiliser Society, 2008).

  36. 36.

    Cordell, D. & White, S. Peak phosphorus: clarifying the key issues of a vigorous debate about long-term phosphorus security. Sustainability 3, 2027–2049 (2011).

    Google Scholar 

  37. 37.

    Schröder, J. J., Cordell, D., Smit, A. L. & Rosemarin, A. Sustainable Use of Phosphorus: EU Tender ENV.B.1./ETU/2009/0025 Report 357 (Plant Research International, 2010).

  38. 38.

    Emission Factor Documentation for AP-42, Section 11.21: Phosphate Rock Processing (EPA, 2010).

  39. 39.

    Environmental, Health and Safety Guidelines for Phosphate Fertilizer Manufacturing Report No. 113496 (World Bank, 2007).

  40. 40.

    Campbell, B. M. et al. Agriculture production as a major driver of the Earth system exceeding planetary boundaries. Ecol. Soc. 22, 8 (2017).

  41. 41.

    In The European Environment: State and Outlook 2015 Ch. 2 (EEA, 2015).

  42. 42.

    Sutton, M. A. et al. The European Nitrogen Assessment: Sources, Effects and Policy Perspectives (Cambridge Univ. Press, 2011).

  43. 43.

    Bos, J. F. F. P., Smit, A. L. & Schröder, J. J. Is agricultural intensification in the Netherlands running up to its limits? Wageningen J. Life Sci. 66, 65–73 (2013).

    Google Scholar 

  44. 44.

    Breitburg, D. et al. Declining oxygen in the global ocean and coastal waters. Science 359, eaam7240 (2018).

    Google Scholar 

  45. 45.

    Carstensen, J., Andersen, J. H., Gustafsson, B. G. & Conley, D. J. Deoxygenation of the Baltic Sea during the last century. Proc. Natl Acad. Sci. USA 111, 5628–5633 (2014).

    CAS  Google Scholar 

  46. 46.

    Schulze, E. D. et al. Importance of methane and nitrous oxide for Europe’s terrestrial greenhouse-gas balance. Nat. Geosci. 2, 842–850 (2009).

    CAS  Google Scholar 

  47. 47.

    Tóth, G., Guicharnaud, R.-A., Tóth, B. & Hermann, T. Phosphorus levels in croplands of the European Union with implications for P fertilizer use. Eur. J. Agron. 55, 42–52 (2014).

    Google Scholar 

  48. 48.

    Towards the Circular Economy: Accelerating the Scale-Up across Global Supply Chains (World Economic Forum, 2014).

  49. 49.

    de Bruyn, S. et al. Environmental Prices Handbook 2017: Methods and Numbers for Valuation of Environmental Impacts Report No. 18.7N54.057 (CE Delft, 2018).

  50. 50.

    Afman, M., Lingree, E. R. & Odegard, I. Milieuscore SNB slibverwerking: update 2015 en 2017 - Effect van maatregelen tegendrukturbine en fosfaatterugwinning op LCA en CO 2 Report No. 7.2K36.104 (CE Delft, 2017).

  51. 51.

    Weidema, B. Market Information in Life Cycle Assessment Report No. 863 (Danish EPA, 2003).

  52. 52.

    Weidema, B., Frees, N. & Nielsen, A. M. Marginal production technologies for life cycle inventories. Int. J. Life Cycle Assess. 4, 48–56 (1999).

    Google Scholar 

  53. 53.

    Ekvall, T. & Weidema, B. P. System boundaries and input data in consequential life cycle inventory analysis. Int. J. Life Cycle Assess. 9, 161–171 (2004).

    Google Scholar 

  54. 54.

    Hauschild, M. Z. et al. Identifying best existing practice for characterization modeling in life cycle impact assessment. Int. J. Life Cycle Assess. 18, 683–697 (2013).

    CAS  Google Scholar 

  55. 55.

    Forster, P. et al. in Climate Change 2007: The Physical Science Basis (eds S. Solomon et al.) Ch. 2 (Cambridge Univ. Press, 2007).

  56. 56.

    Seppälä, J., Posch, M., Johansson, M. & Hettelingh, J.-P. Country-dependent characterisation factors for acidification and terrestrial eutrophication based on accumulated exceedance as an impact category indicator. Int. J. Life Cycle Assess. 11, 403–416 (2006).

    Google Scholar 

  57. 57.

    Goedkoop, M. et al. ReCiPe 2008: A Life Cycle Impact Assessment Method which Comprises Harmonised Category Indicators at the Midpoint and the Endpoint Level Report No. 1.08 (VROM, 2009).

  58. 58.

    Struijs, J. et al. in ReCiPe 2008: A Life Cycle Impact Assessment Method which Comprises Harmonised Category Indicators at the Midpoint and the Endpoint Level (Goedkoop, M. et al.) Ch. 6 (VROM, 2009).

  59. 59.

    Rosenbaum, R. K. et al. USEtox human exposure and toxicity factors for comparative assessment of toxic emissions in life cycle analysis: sensitivity to key chemical properties. Int. J. Life Cycle Assess. 16, 710–727 (2011).

    CAS  Google Scholar 

  60. 60.

    van Oers, L., de Koning, A., Guinee, J. B. & Huppes, G. Abiotic Resource Depletion in LCA (Road and Hydraulic Engineering Institute, 2002).

  61. 61.

    Clavreul, J., Baumeister, H. & Christensen, T. H. An environmental assessment system for environmental technologies. Environ. Model. Softw. 60, 18–30 (2014).

    Google Scholar 

  62. 62.

    Hunkeler, D., Lichtenvort, K. & Rebitzer, G. Environmental Life Cycle Costing (CRC Press, 2008).

  63. 63.

    Swarr, T. E. et al. Environmental life-cycle costing: a code of practice. Int. J. Life Cycle Assess. 16, 389–391 (2011).

    Google Scholar 

  64. 64.

    Martinez-Sanchez, V., Kromann, M. A. & Astrup, T. F. Life cycle costing of waste management systems: overview, calculation principles and case studies. Waste Manage. 36, 343–355 (2015).

    Google Scholar 

  65. 65.

    Samfundsøkonomisk vurdering af miljøprojekter (Danish Ministry of the Environment, 2010).

  66. 66.

    Sterner, T. et al. Policy design for the Anthropocene. Nat. Sustain. 2, 14–21 (2019).

    Google Scholar 

  67. 67.

    Annex: Update Monetisation of the MMG Method (2014) (OVAM, 2015).

  68. 68.

    Giuntoli, J. et al. Climate change impacts of power generation from residual biomass. Biomass Bioenergy 89, 146–158 (2016).

    CAS  Google Scholar 

  69. 69.

    Hamelin, L., Naroznova, I. & Wenzel, H. Environmental consequences of different carbon alternatives for increased manure-based biogas. Appl. Energy 114, 774–782 (2014).

    CAS  Google Scholar 

  70. 70.

    Tonini, D. et al. GHG emission factors for bioelectricity, biomethane, and bioethanol quantified for 24 biomass substrates with consequential life-cycle assessment. Bioresour. Technol. 208, 123–133 (2016).

    CAS  Google Scholar 

  71. 71.

    Wenzel, H. et al. Carbon Footprint of Bioenergy Pathways for the Future Danish Energy System Report No. A037857 (COWI, 2014).

  72. 72.

    Djuric Ilic, D., Eriksson, O., Ödlund, L. & Åberg, M. No zero burden assumption in a circular economy. J. Clean. Prod. 182, 352–362 (2018).

    Google Scholar 

  73. 73.

    Olofsson, J. & Börjesson, P. Residual biomass as resource—life-cycle environmental impact of wastes in circular resource systems. J. Clean. Prod. 196, 997–1006 (2018).

    Google Scholar 

  74. 74.

    Levenscyclusanalyse van grondstoffen uit rioolwater Report No. 22.2016 (STOWA, 2016).

  75. 75.

    Hermann, L. & Schaaf, M. in Phosphorus Recovery and Recycling (eds Ohtake, H. & Tsuneda, S.) Ch. 15 (Springer, 2019).

  76. 76.

    Winward, D. L. & Koenig, R. T. A comparison of liquid phosphoric acid and dry phosphorus fertilizer sources for irrigated alfalfa production on calcareous soils. Comm. Soil Sci. Plant Anal. 35, 39–50 (2004).

    Google Scholar 

  77. 77.

    Environmental, Economic and Social Impacts of the Use of Sewage Sludge on Land: Final Report Report No. DG ENV.G.4/ETU/2008/0076r (Milieu Ltd, WRc and RPA, 2010).

  78. 78.

    Buckwell, A. & Nadeu, E. Nutrient Recovery and Reuse (NRR) in European Agriculture: A review of the Issues, Opportunities, and Actions (RISE Foundation, 2016).

  79. 79.

    Oenema, O. in ReUseWaste Mid-term Review Meeting (ReUseWaste, 2013).

  80. 80.

    Dobbelare, D. in European Fat Processors and Renderers Association (EFPRA) Congress (EFPRA, 2017).

  81. 81.

    Eurostat: Your Key to European Statistics (Eurostat, 2016); http://ec.europa.eu/eurostat/data/database

  82. 82.

    Buckwell, A. & Nadeu, E. What Is the Safe Operating Space for EU Livestock? (RISE Foundation, 2018).

  83. 83.

    Total Phosphorus in Lakes (EEA, 2019); https://go.nature.com/31B4dho

  84. 84.

    Leip, A. et al. Impacts of European livestock production: nitrogen, sulphur, phosphorus and greenhouse gas emissions, land-use, water eutrophication and biodiversity. Environ. Res. Lett. 10, 115004 (2015).

    Google Scholar 

  85. 85.

    Moller, K. Assessment of Alternative Phosphorus Fertilisers for Organic Farming: Meat and Bone Meal Report No. 29505 (Universitat Hohenheim, 2015).

  86. 86.

    Ecoinvent Version 3.5 (Ecoinvent, 2017).

  87. 87.

    Martínez-Blanco, J. et al. Compost benefits for agriculture evaluated by life cycle assessment. A review. Agron. Sustain. Dev. 33, 721–732 (2013).

    Google Scholar 

  88. 88.

    Hijbeek, R. et al. Do organic inputs matter—a meta-analysis of additional yield effects for arable crops in Europe. Plant Soil 411, 293–303 (2017).

    CAS  Google Scholar 

  89. 89.

    Jeffery, S. et al. Biochar boosts tropical but not temperate crop yields. Environ. Res. Lett. 12, 053001 (2017).

    Google Scholar 

  90. 90.

    Bruun, S., Hansen, T. L., Christensen, T. H., Magid, J. & Jensen, L. S. Application of processed organic municipal solid waste on agricultural land—a scenario analysis. Environ. Model. Assess. 11, 251–265 (2006).

    Google Scholar 

  91. 91.

    Lehmann, J. et al. in Biochar for Environmental Management: Science, Technology and Implementation 2nd edn (eds Lehmann, J. & Joseph, S.) Ch. 10 (Routledge, 2015).

  92. 92.

    Hanserud, O. S., Cherubini, F., Øgaard, A. F., Müller, D. B. & Brattebø, H. Choice of mineral fertilizer substitution principle strongly influences LCA environmental benefits of nutrient cycling in the agri-food system. Sci. Total Environ. 615, 219–227 (2018).

    CAS  Google Scholar 

  93. 93.

    Johnston, A. E. Understanding Potassium and Its Use in Agriculture (European Fertilizer Manufacturers’ Association, 2003).

  94. 94.

    Johnston, A. E. & Steen, I. Understanding Phosphorus and Its Use in Agriculture (European Fertilizer Manufacturers’ Association, 2000).

  95. 95.

    Schoumans, O. Phosphorus Leaching from Soils: Process Description, Risk Assessment and Mitigation. PhD thesis, Wageningen Univ. (2015).

  96. 96.

    Struviet en struviethoudende producten uit communaal afvalwater Report No. 2016-12 (STOWA, 2016).

  97. 97.

    De Graaff, L., Odegard, I. & Nusselder, S. LCA of Thermal Conversion of Poultry Litter at BMC Moerdijk Report No. 17.2H94.01 (CE Delft, 2017).

  98. 98.

    Velthof, G. L. et al. A model for inventory of ammonia emissions from agriculture in the Netherlands. Atmos. Environ. 46, 248–255 (2012).

    CAS  Google Scholar 

  99. 99.

    Holly, M. A., Larson, R. A., Powell, J. M., Ruark, M. D. & Aguirre-Villegas, H. Greenhouse gas and ammonia emissions from digested and separated dairy manure during storage and after land application. Agric. Ecosyst. Environ. 239, 410–419 (2017).

    CAS  Google Scholar 

  100. 100.

    Giner Santonja, G. et al. Best Available Techniques (BAT) Reference Document for the Intensive Rearing of Poultry or Pigs. Industrial Emissions Directive2010/75/EU (EU Publications, 2017).

  101. 101.

    Gac, A., Béline, F., Bioteau, T. & Maguet, K. A French inventory of gaseous emissions (CH4, N2O, NH3) from livestock manure management using a mass-flow approach. Livestock Sci. 112, 252–260 (2007).

    Google Scholar 

  102. 102.

    Hansen, M. N., Sommer, S. G., Hutchings, N. J. & Sørensen, P. Emission Factors for Calculation of Ammonia Volatilization by Storage and Application of Animal Manure Report No. 84 (Aarhus Universitet, 2008).

  103. 103.

    Willén, A. Nitrous Oxide and Methane Emissions from Storage and Land Application of Organic Fertilisers with the Focus on Sewage Sludge. PhD thesis, Swedish Univ. Agricultural Sciences (2016).

  104. 104.

    ELCD Database (Joint Research Centre, 2003); http://eplca.jrc.ec.europa.eu/ELCD3/

  105. 105.

    Brogaard, L. K. & Christensen, T. H. Life cycle assessment of capital goods in waste management systems. Waste Manage. 56, 561–574 (2016).

    CAS  Google Scholar 

  106. 106.

    Database of Waste Management Technologies (EU Life, 2018); https://go.nature.com/31sZ5fe

  107. 107.

    Bisinella, V., Conradsen, K., Christensen, T. H. & Astrup, T. F. A global approach for sparse representation of uncertainty in life cycle assessments of waste management systems. Int. J. Life Cycle Assess. 21, 378–394 (2016).

    Google Scholar 

Download references


We are grateful to the manufacturers that provided primary data for the life cycle inventory. We thank P. Eder and E. Garbarino for guidance and revising previous drafts of this manuscript and A. Atkinson for language editing. The views expressed are purely those of the authors and may not in any circumstances be regarded as stating an official position of the European Commission.

Author information




D.T. performed the environmental life cycle and cost analyses; H.G.M.S. and D.H. conceived the research and supervised the collection of primary data from manufacturers; D.T. and D.H. conceptualized the life cycle approach applied; D.H. wrote the paper with substantial contributions from D.T. and H.G.M.S. All authors interpreted the results, elaborated the structure for data presentation and developed the research conclusions.

Corresponding author

Correspondence to Dries Huygens.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–7, notes, methods and refs. 1–62.

Supplementary Tables

Supplementary Tables 1–20.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tonini, D., Saveyn, H.G.M. & Huygens, D. Environmental and health co-benefits for advanced phosphorus recovery. Nat Sustain 2, 1051–1061 (2019). https://doi.org/10.1038/s41893-019-0416-x

Download citation

Further reading


Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing