Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Sustainable intensification of agricultural drainage

Abstract

Artificial drainage is among the most widespread land improvements for agriculture. Drainage benefits crop production, but also promotes nutrient losses to water resources. Here, we outline how a systems perspective for sustainable intensification of drainage can mitigate nutrient losses, increase fertilizer nitrogen-use efficiency and reduce greenhouse-gas emissions. There is an immediate opportunity to realize these benefits because agricultural intensification and climate change are increasing the extent and intensity of drainage systems. If a systems-based approach to drainage can consistently increase nitrogen-use efficiency, while maintaining or increasing crop production, farmers and the environment will benefit.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Changes in crop and soil processes with drainage.
Fig. 2: Probability density functions of key crop system processes.
Fig. 3: Relative differences in ecosystem properties and processes between drained and undrained continuous maize cropping systems in southeast Iowa, USA.

References

  1. 1.

    Pretty, J. et al. Global assessment of agricultural system redesign for sustainable intensification. Nat. Sustain. 1, 441–446 (2018).

    Article  Google Scholar 

  2. 2.

    Smedema, L. K., Vlotman, W. F. & Rycroft, D. W. Modern Land Drainage (Taylor & Francis, 2004).

  3. 3.

    David, M. B., Drinkwater, L. E. & McIsaac, G. F. Sources of nitrate yields in the Mississippi River Basin. J. Environ. Qual. 39, 1657–1667 (2010).

    CAS  Article  Google Scholar 

  4. 4.

    Schultz, B., Zimmer, D. & Vlotman, W. F. Drainage under increasing and changing requirements. Irrig. Drain. 56, S3–S22 (2007).

    Article  Google Scholar 

  5. 5.

    Johnston, C. A. Wetland losses due to row crop expansion in the Dakota prairie pothole region. Wetlands 33, 175–182 (2013).

    Article  Google Scholar 

  6. 6.

    International Programme for Technology and Research in Irrigation and Drainage Drainage and Sustainability (Food and Agriculture Organization of the United Nations, 2001).

  7. 7.

    Helmers, M. J., Melvin, S. & Lemke, D. Drainage main rehabilitation in Iowa. In World Environ. Water Resour. Congr. 2009 4088–4092 (ACSE, 2009).

  8. 8.

    Brown, I. Climate change and soil wetness limitations for agriculture: spatial risk assessment framework with application to Scotland. Geoderma 285, 173–184 (2017).

    Article  Google Scholar 

  9. 9.

    Strock, J. in Managing Soil Health for Sustainable Agriculture Vol. 2 (ed. Reicosky, D.) Ch. 3 (Burleigh Dodds, 2018).

  10. 10.

    Pittelkow, C. M. et al. When does no-till yield more? A global meta-analysis. Field Crop. Res. 183, 156–168 (2015).

    Article  Google Scholar 

  11. 11.

    Strock, J. S. et al. Advances in drainage: selected works from the Tenth International Drainage Symposium. Trans. ASABE 61, 161–168 (2018).

    Article  Google Scholar 

  12. 12.

    Kucharik, C. J. Contribution of planting date trends to increased maize yields in the central United States. Agron. J. 100, 328–336 (2008).

    Article  Google Scholar 

  13. 13.

    Rosenzweig, C., Iglesias, A., Yang, X. B., Epstein, P. R. & Chivian, E. Climate change and extreme weather events; implications for food production, plant diseases, and pests. Glob. Change Hum. Health 2, 90–104 (2001).

    Article  Google Scholar 

  14. 14.

    Ebrahimi-Mollabashi, E. et al. Enhancing APSIM to simulate excessive moisture effects on root growth. Field Crop. Res. 236, 58–67 (2019).

    Article  Google Scholar 

  15. 15.

    Herrera, A. Responses to flooding of plant water relations and leaf gas exchange in tropical tolerant trees of a black-water wetland. Front. Plant Sci. 4, 106 (2013).

    CAS  Article  Google Scholar 

  16. 16.

    Jin, C. X., Sands, G. R., Kandel, H. J., Wiersma, J. H. & Hansen, B. J. Influence of subsurface drainage on soil temperature in a cold climate. J. Irrig. Drain. Eng. 134, 83–88 (2008).

    Article  Google Scholar 

  17. 17.

    Parton, W. J., Schimel, D. S., Cole, C. V. & Ojima, D. S. Analysis of factors controlling soil organic matter levels in Great Plains grasslands. Soil Sci. Soc. Am. J. 51, 1173–1179 (1987).

    CAS  Article  Google Scholar 

  18. 18.

    Paul, C. et al. Assessing the role of artificially drained agricultural land for climate change mitigation in Ireland. Environ. Sci. Policy 80, 95–104 (2018).

    Article  Google Scholar 

  19. 19.

    IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

  20. 20.

    Smith, P. et al. Global change pressures on soils from land use and management. Glob. Change Biol. 22, 1008–1028 (2016).

    Article  Google Scholar 

  21. 21.

    James, H. R. & Fenton, T. E. Water tables in paired artificially drained and undrained soil catenas in Iowa. Soil Sci. Soc. Am. J. 57, 774–781 (1993).

    Article  Google Scholar 

  22. 22.

    Fernández, F. G., Fabrizzi, K. P. & Naeve, S. L. Corn and soybean’s season-long in-situ nitrogen mineralization in drained and undrained soils. Nutr. Cycl. Agroecosys. 107, 33–47 (2017).

    Article  Google Scholar 

  23. 23.

    Meersmans, J. et al. Changes in organic carbon distribution with depth in agricultural soils in northern Belgium, 1960–2006. Glob. Change Biol. 15, 2739–2750 (2009).

    Article  Google Scholar 

  24. 24.

    Brown, R. L., Hangs, R., Schoenau, J. & Bedard-Haughn, A. Soil nitrogen and phosphorus dynamics and uptake by wheat grown in drained prairie soils under three moisture scenarios. Soil Sci. Soc. Am. J. 81, 1496–1504 (2017).

    CAS  Article  Google Scholar 

  25. 25.

    Cassman, K. G., Dobermann, A. & Walters, D. T. Agroecosystems, nitrogen-use efficiency, and nitrogen management. Ambio 31, 132–140 (2002).

    Article  Google Scholar 

  26. 26.

    Drinkwater, L. E. & Snapp, S. S. Nutrients in agroecosystems: rethinking the management paradigm. Adv. Agron. 92, 163–186 (2007).

    CAS  Article  Google Scholar 

  27. 27.

    Wesström, I., Joel, A. & Messing, I. Controlled drainage and subirrigation – a water management option to reduce non-point source pollution from agricultural land. Agric. Ecosyst. Environ. 198, 74–82 (2014).

    Article  Google Scholar 

  28. 28.

    Sands, G. R., Song, I., Busman, L. M. & Hansen, B. J. The effects of subsurface drainage depth and intensity on nitrate loads in the northern cornbelt. Trans. ASABE 51, 937–946 (2008).

    Article  Google Scholar 

  29. 29.

    Skaggs, R. W., Fausey, N. R. & Evans, R. O. Drainage water management. J. Soil Water Conserv. 67, 167A–172A (2012).

    Article  Google Scholar 

  30. 30.

    Nangia, V. et al. Measuring and modeling the effects of drainage water management on soil greenhouse gas fluxes from corn and soybean fields. J. Environ. Manag. 129, 652–664 (2013).

    CAS  Article  Google Scholar 

  31. 31.

    Kumar, S., Nakajima, T., Kadono, A., Lal, R. & Fausey, N. Long-term tillage and drainage influences on greenhouse gas fluxes from a poorly drained soil of central Ohio. J. Soil Water Conserv. 69, 553–563 (2014).

    Article  Google Scholar 

  32. 32.

    Dobbie, K. E. & Smith, K. A. The effect of water table depth on emissions of N2O from a grassland soil. Soil Use Manag. 22, 22–28 (2006).

    Article  Google Scholar 

  33. 33.

    Butterbach-Bahl, K., Baggs, E. M., Dannenmann, M., Kiese, R. & Zechmeister-Boltenstern, S. Nitrous oxide emissions from soils: how well do we understand the processes and their controls? Philos. Trans. R. Soc. B 368, 20130122 (2013).

    Article  Google Scholar 

  34. 34.

    Jacinthe, P. A., Vidon, P., Fisher, K., Liu, X. & Baker, M. E. Soil methane and carbon dioxide fluxes from cropland and riparian buffers in different hydrogeomorphic settings. J. Environ. Qual. 44, 1080–1090 (2015).

    CAS  Article  Google Scholar 

  35. 35.

    Kaye, J. P. & Quemada, M. Using cover crops to mitigate and adapt to climate change. A review. Agron. Sustain. Dev. 37, 4 (2017).

    Article  Google Scholar 

  36. 36.

    Gardner, J. B. & Drinkwater, L. E. The fate of nitrogen in grain cropping systems: a meta-analysis of 15N field experiments. Ecol. Appl. 19, 2167–2184 (2009).

    Article  Google Scholar 

  37. 37.

    Lory, J. A. & Scharf, P. C. Yield goal versus delta yield for predicting fertilizer nitrogen need in corn. Agron. J. 95, 994–999 (2003).

    Article  Google Scholar 

  38. 38.

    Ordóñez, R. A. et al. Maize and soybean root front velocity and maximum depth in Iowa, USA. Field Crop. Res. 215, 122–131 (2018).

    Article  Google Scholar 

  39. 39.

    Rizzo, G., Edreira, J. I. R., Archontoulis, S. V., Yang, H. S. & Grassini, P. Do shallow water tables contribute to high and stable maize yields in the US Corn Belt? Glob. Food Secur. 18, 27–34 (2018).

    Article  Google Scholar 

  40. 40.

    Davidson, E. A. & Ackerman, I. L. Changes in soil carbon inventories following cultivation of previously untilled soils. Biogeochemistry 20, 161–193 (1993).

    CAS  Article  Google Scholar 

  41. 41.

    Kanwar, R. S., Johnson, H. P., Schult, D., Fenton, T. E. & Hickman, R. D. Drainage needs and returns in north-central Iowa. Trans. ASAE 26, 457–464 (1983).

    Article  Google Scholar 

  42. 42.

    Iowa Nutrient Reduction Strategy (Iowa Department of Agriculture and Land Stewardship, 2014); https://go.nature.com/2kjyPVg

  43. 43.

    Illinois Nutrient Loss Reduction Strategy (Illinois Environmental Protection Agency and Illinois Department of Agriculture, 2015); https://go.nature.com/2kuHjZE

  44. 44.

    Odhiambo, J. J. O. & Bomke, A. A. Cover crop effects on spring soil water content and the implications for cover crop management in south coastal British Columbia. Agric. Water Manag. 88, 92–98 (2007).

    Article  Google Scholar 

  45. 45.

    Bowles, T. M. et al. Addressing agricultural nitrogen losses in a changing climate. Nat. Sustain. 1, 399–408 (2018).

    Article  Google Scholar 

  46. 46.

    Christianson, L. E., Bhandari, A. & Helmers, M. J. A practice-oriented review of woodchip bioreactors for subsurface agricultural drainage. Appl. Eng. Agric. 28, 861–874 (2012).

    Article  Google Scholar 

  47. 47.

    Groh, T. A., Davis, M. P., Isenhart, T. M., Jaynes, D. B. & Parkin, T. B. In situ denitrification in saturated riparian buffers. J. Environ. Qual. 48, 376–384 (2018).

    Article  Google Scholar 

  48. 48.

    Crumpton, W. G., Kovacic, D. A., Hey, D. L. & Kostel, J. A. Potential of Restored and Constructed Wetlands to Reduce Nutrient Export from Agricultural Watersheds in the Corn Belt (American Society of Agricultural and Biological Engineers, 2008).

  49. 49.

    Bianchi, F. J. J. A., Booij, C. J. H. & Tscharntke, T. Sustainable pest regulation in agricultural landscapes: a review on landscape composition, biodiversity and natural pest control. Proc. R. Soc. B 273, 1715–1727 (2006).

    CAS  Article  Google Scholar 

  50. 50.

    Ritzema, H. P. & Stuyt, L. C. P. M. Land drainage strategies to cope with climate change in the Netherlands. Acta Agric. Scand. Sect. B—Soil Plant Sci. 65, 80–92 (2015).

    Google Scholar 

  51. 51.

    Baker, J. M., Griffis, T. J. & Ochsner, T. E. Coupling landscape water storage and supplemental irrigation to increase productivity and improve environmental stewardship in the U.S. Midwest. Water Resour. Res. 48, W05301 (2012).

    Article  Google Scholar 

  52. 52.

    Angel, J. R. et al. in Impacts, Risks, and Adaptation in the United States: Fourth National Climate Assessment Vol. II (eds Reidmiller, D. R. et al.) 872–940 (US Global Change Research Program, 2018).

  53. 53.

    Trnka, M. et al. Adverse weather conditions for European wheat production will become more frequent with climate change. Nat. Clim. Change 4, 637–643 (2014).

    Article  Google Scholar 

  54. 54.

    Lobell, D. B. et al. Greater sensitivity to drought accompanies maize yield increase in the U.S. Midwest. Science 344, 516–519 (2014).

    CAS  Article  Google Scholar 

  55. 55.

    Wang, Y. et al. Methane, carbon dioxide and nitrous oxide fluxes in soil profile under a winter wheat-summer maize rotation in the North China Plain. PLoS ONE 9, e98445 (2014).

    Article  Google Scholar 

  56. 56.

    Gass, W. B., Peterson, G. A., Hauck, R. D. & Olson, R. A. Recovery of residual nitrogen by corn (Zea mays L.) from various soil depths as measured by 15N tracer techniques. Soil Sci. Soc. Am. J. 35, 290–294 (2010).

    Article  Google Scholar 

  57. 57.

    Swinton, S. M., Rector, N., Robertson, G. P., Jolejole-Foreman, C. B. & Lupi, F. in The Ecology of Agricultural Landscapes: Long-Term Research on the Path to Sustainability (eds Hamilton, S. K., Doll, J. E. & Robertson, G. P.) Ch. 13 (Oxford Univ. Press, 2015).

  58. 58.

    Skaggs, R. W. Coefficients for quantifying subsurface drainage rates. Appl. Eng. Agric. 33, 793–799 (2017).

    Article  Google Scholar 

  59. 59.

    Design and Construction of Surface Drainage Systems on Agricultural Lands in Humid Areas ASAE EP260.5 FEB2015 (American Society of Agricultural and Biological Engineers, 2015).

Download references

Acknowledgements

This work was supported by the US Department of Agriculture National Institute of Food and Agriculture Grant no. 20196701929404, the Foundation for Food and Agricultural Research, the Iowa State University (ISU) Plant Sciences Institute Faculty Scholars program, and a professional development assignment to M.J.C. that was granted by ISU and hosted by ETH-Zürich.

Author information

Affiliations

Authors

Contributions

M.J.C. led the concept development and writing; all authors contributed to the concept development, data interpretation and writing. S.V.A. conducted the modelling. H.J.P. led data analyses and figure development; M.J.C. contributed to data analyses and figure development.

Corresponding author

Correspondence to Michael J. Castellano.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–6, Tables 1–3 and refs. 1–37.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Castellano, M.J., Archontoulis, S.V., Helmers, M.J. et al. Sustainable intensification of agricultural drainage. Nat Sustain 2, 914–921 (2019). https://doi.org/10.1038/s41893-019-0393-0

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing