Sustainable co-production of food and solar power to relax land-use constraints

Abstract

Renewable energy could often be land constrained by the diffuse nature of renewable resources. To relax land constraints, we propose the concept of ‘aglectric’ farming, where agricultural land will be sustainably shared for food and energy co-production. While wind turbines on agricultural land are already put into practice, solar power production on agricultural land is still under research. Here, we propose photovoltaic systems that are suitable for installation on agricultural land. Adjusting the intensity, spectral distribution and duration of shading allows innovative photovoltaic systems to achieve significant power generation without potentially diminishing agricultural output. The feasibility of solar aglectric farms has been proven through shadow modelling. The proposed solar aglectric farms—used alone or in combination with regular solar parks or wind plants—could be a solution for a sustainable renewable economy that supports the ‘full Earth’ of over 10 billion people.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Detailed calculation model for a fossil fuel to solar energy transition.
Fig. 2: Power density requirements by state, and percentages of agricultural land required to meet states’ energy needs.
Fig. 3: PV systems for co-production of food and energy with farmland.
Fig. 4: Spatially mapped shadow depth for cases A, D and E from Table 1.

Data availability

The data used in this analysis were obtained from the references as noted. Any additional data needed to reproduce or support this work can be obtained from the corresponding author on reasonable request.

Code availability

The code required to reproduce this work is available from the corresponding author on reasonable request.

References

  1. 1.

    UN Department of Economic and Social Affairs World Population Prospects: The 2017 Revision—Key Findings and Advance Tables Working Paper No. ESA/P/WP/248 (2017).

  2. 2.

    Tilman, D. Food & health of a full Earth. Daedalus 144, 5–7 (2015).

    Article  Google Scholar 

  3. 3.

    Jacobson, M. Z. et al. 100% clean and renewable wind, water, and sunlight all-sector energy roadmaps for 139 countries of the world. Joule 1, 108–121 (2017).

    Article  Google Scholar 

  4. 4.

    Smil, V. Power Density: A Key to Understanding Energy Sources and Uses (MIT Press, 2015).

  5. 5.

    MacKay, D. J. C. Solar energy in the context of energy use, energy transportation and energy storage. Phil. Trans. R. Soc. A 371, 20110431 (2013).

    Article  Google Scholar 

  6. 6.

    Capellán-Pérez, I., de Castro, C. & Arto, I. Assessing vulnerabilities and limits in the transition to renewable energies: land requirements under 100% solar energy scenarios. Renew. Sust. Energy Rev. 77, 760–782 (2017).

    Article  Google Scholar 

  7. 7.

    Macilwain, C. Energy: supergrid. Nature 468, 624–625 (2010).

    CAS  Article  Google Scholar 

  8. 8.

    Denholm, P., Hand, M., Jackson, M. & Ong, S. Land use Requirements of Modern Wind Power Plants in the United States Technical Report NREL/TP-6A2-45834 (National Renewable Energy Laboratory, 2009).

  9. 9.

    Ong, S., Campbell, C., Denholm, P., Margolis, R. & Heath, G. Land-Use Requirements for Solar Power Plants in the United States Technical Report NREL/TP-6A20-56290 (National Renewable Energy Laboratory, 2013).

  10. 10.

    Gençer, E. et al. Directing solar photons to sustainably meet food, energy, and water needs. Sci. Rep. 7, 3133 (2017).

    Article  Google Scholar 

  11. 11.

    Armstrong, A., Nicholas, J. O. & Jeanette, W. Solar park microclimate and vegetation management effects on grassland carbon cycling. Environ. Res. Lett. 11, 074016 (2016).

    Article  Google Scholar 

  12. 12.

    Marrou, H., Guilioni, L., Dufour, L., Dupraz, C. & Wéry, J. Microclimate under agrivoltaic systems: is crop growth rate affected in the partial shade of solar panels? Agric. Meteorol. 177, 117–132 (2013).

    Article  Google Scholar 

  13. 13.

    Marrou, H., Dufour, L. & Wéry, J. How does a shelter of solar panels influence water flows in a soil–crop system? Eur. J. Agron. 50, 38–51 (2013).

    Article  Google Scholar 

  14. 14.

    Goetzberger, A. & Zastrow, A. On the coexistence of solar-energy conversion and plant cultivation. Int. J. Sol. Energy 1, 55–69 (1982).

    Article  Google Scholar 

  15. 15.

    Dupraz, C. et al. Combining solar photovoltaic panels and food crops for optimising land use: towards new agrivoltaic schemes. Renew. Energy 36, 2725–2732 (2011).

    Article  Google Scholar 

  16. 16.

    Dinesh, H. & Pearce, J. M. The potential of agrivoltaic systems. Renew. Sust. Energy Rev. 54, 299–308 (2016).

    Article  Google Scholar 

  17. 17.

    Valle, B. et al. Increasing the total productivity of a land by combining mobile photovoltaic panels and food crops. Appl. Energy 206, 1495–1507 (2017).

    Article  Google Scholar 

  18. 18.

    Fraunhofer Institute for Solar Energy Systems. Harvesting the Sun for power and produce—agrophotovoltaics increases the land use efficiency by over 60 percent. Fraunhofer ISE https://www.ise.fraunhofer.de/en/press-media/press-releases/2017/harvesting-the-sun-for-power-and-produce-agrophotovoltaics-increases-the-land-use-efficiency-by-over-60-percent.html (2017).

  19. 19.

    Agrawal, R. & Singh, N. R. Solar energy to biofuels. Annu. Rev. Chem. Biomol. Eng. 1, 343–364 (2010).

    CAS  Article  Google Scholar 

  20. 20.

    Agrawal, R. & Mallapragada, D. S. Chemical engineering in a solar energy‐driven sustainable future. AIChE J. 56, 2762–2768 (2010).

    CAS  Article  Google Scholar 

  21. 21.

    Al-Musleh, E. I., Mallapragada, D. S. & Agrawal, R. Continuous power supply from a baseload renewable power plant. Appl. Energy 122, 83–93 (2014).

    Article  Google Scholar 

  22. 22.

    Nickerson, C., Ebel, R., Borchers, A. & Carriazo, F. Major Uses of Land in the United States, 2007 (USDA Economic Research Service, 2011).

  23. 23.

    Ordóñez, J. et al. Analysis of the photovoltaic solar energy capacity of residential rooftops in Andalusia (Spain). Renew. Sust. Energy Rev. 14, 2122–2130 (2010).

    Article  Google Scholar 

  24. 24.

    Hong, T., Lee, M., Koo, C., Kim, J. & Jeong, K. Estimation of the available rooftop area for installing the rooftop solar photovoltaic (PV) system by analyzing the building shadow using hillshade analysis. Energy Procedia 88, 408–413 (2016).

    Article  Google Scholar 

  25. 25.

    Izquierdo, S., Montañés, C., Dopazo, C. & Fueyo, N. Roof-top solar energy potential under performance-based building energy codes: the case of Spain. Sol. Energy 85, 208–213 (2011).

    Article  Google Scholar 

  26. 26.

    World Energy Balances 2017: Overview (International Energy Agency, 2017).

  27. 27.

    The World Bank Agricultural Land (% of Land Area) (Food and Agriculture Organization, 2018); https://data.worldbank.org/indicator/AG.LND.AGRI.ZS?view=chart

  28. 28.

    The World Bank Forest Area (% of Land Area) (Food and Agriculture Organization, 2018); https://data.worldbank.org/indicator/AG.LND.FRST.ZS?view=chart

  29. 29.

    Sun, X., Khan, M. R., Deline, C. & Alam, M. A. Optimization and performance of bifacial solar modules: a global perspective. Appl. Energy 212, 1601–1610 (2018).

    Article  Google Scholar 

  30. 30.

    Zhao, B., Sun, X., Khan, M. R. & Alam, M. A. Purdue University bifacial module calculator (PUB). nanoHUB https://nanohub.org/resources/pub (2018).

  31. 31.

    Khan, M. R., Hanna, A., Sun, X. & Alam, M. A. Vertical bifacial solar farms: physics, design, and global optimization. Appl. Energy 206, 240–248 (2018).

    Article  Google Scholar 

  32. 32.

    Ulavi, T. U., Davidson, J. H. & Hebrink, T. Analysis of a hybrid PV/T concept based on wavelength selective films. J. Sol. Energy Eng. 136, 031009 (2014).

    Article  Google Scholar 

  33. 33.

    Charalambous, P. G., Maidment, G. G., Kalogirou, S. A. & Yiakoumetti, K. Photovoltaic thermal (PV/T) collectors: a review. Appl. Therm. Eng. 27, 275–286 (2007).

    CAS  Article  Google Scholar 

  34. 34.

    Ilic, O. et al. Tailoring high-temperature radiation and the resurrection of the incandescent source. Nat. Nanotechnol. 11, 320–324 (2016).

    CAS  Article  Google Scholar 

  35. 35.

    Imenes, A. G. & Mills, D. R. Spectral beam splitting technology for increased conversion efficiency in solar concentrating systems: a review. Sol. Energy Mater. Sol. Cells 84, 19–69 (2004).

    CAS  Article  Google Scholar 

  36. 36.

    Yu, Z. J., Fisher, K. C., Wheelwright, B. M., Angel, R. P. & Holman, Z. C. PV mirror: a new concept for tandem solar cells and hybrid solar converters. IEEE J. Photovolt. 5, 1791–1799 (2015).

    Article  Google Scholar 

  37. 37.

    McCree, K. J. The action spectrum, absorptance and quantum yield of photosynthesis in crop plants. Agric. Meteorol. 9, 191–216 (1971).

    Article  Google Scholar 

  38. 38.

    POWER Project Data Sets (NASA Langley Research Center, 2018); https://power.larc.nasa.gov/

  39. 39.

    Jose, B. S. Agroforestry for ecosystem services and environmental benefits: an overview. Agrofor. Syst. 76, 1–10 (2004).

    Article  Google Scholar 

  40. 40.

    State Energy Data System (SEDS): 1960–2014 (Complete) (US Energy Information Administration, 2017); https://www.eia.gov/state/seds/seds-data-complete.php?sid=US#Consumption

  41. 41.

    Agrawal, R. & Singh, N. R. Synergistic routes to liquid fuel for a petroleum‐deprived future. AIChE J. 55, 1898–1905 (2009).

    CAS  Article  Google Scholar 

  42. 42.

    Agrawal, R., Singh, N. R., Ribeiro, F. H. & Delgass, W. N. Sustainable fuel for the transportation sector. Proc. Natl Acad. Sci. USA 104, 4828–4833 (2007).

    CAS  Article  Google Scholar 

  43. 43.

    Net Generation by State by Type of Producer by Energy Source (US Energy Information Administration, 2016); https://www.eia.gov/electricity/data/state/

  44. 44.

    Energy Flow Charts (Lawrence Livermore National Laboratory, 2016); https://flowcharts.llnl.gov/commodities/energy

  45. 45.

    How Much Electricity is Lost in Transmission and Distribution in the United States? (US Energy Information Administration, 2017); https://www.eia.gov/tools/faqs/faq.php?id=105&t=3

  46. 46.

    Annual Energy Outlook 2016 (US Energy Information Administration, 2017).

  47. 47.

    Poullikkas, A. Sustainable options for electric vehicle technologies. Renew. Sust. Energy Rev. 41, 1277–1287 (2015).

    Article  Google Scholar 

  48. 48.

    An, F. & Santini, D. Assessing Tank-to-Wheel Efficiencies of Advanced Technology Vehicles Technical Paper 2003-01-0412 (SAE International, 2003).

  49. 49.

    Singh, N. R., Delgass, W. N., Ribeiro, F. H. & Agrawal, R. Estimation of liquid fuel yields from biomass. Environ. Sci. Technol. 44, 5298–5305 (2010).

    CAS  Article  Google Scholar 

  50. 50.

    Efroymson, R. A. et al. 2016 Billion-Ton Report: Advancing Domestic Resources for a Thriving Bioeconomy, Volume 2: Environmental Sustainability Effects of Select Scenarios from Volume 1 No. ORNL/TM-2016/727 (Oak Ridge National Laboratory, Argonne National Laboratory, National Renewable Energy Laboratory & Pacific Northwest National Laboratory, 2017).

  51. 51.

    Parsell, T. et al. A synergistic biorefinery based on catalytic conversion of lignin prior to cellulose starting from lignocellulosic biomass. Green Chem. 17, 1492–1499 (2015).

    CAS  Article  Google Scholar 

  52. 52.

    Stein, J. S., Holmgren, W. F., Forbess, J. & Hansen, C. W. PVLIB: open source photovoltaic performance modeling functions for Matlab and Python. In 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC) 3425–3430 (IEEE, 2016).

Download references

Acknowledgements

This work is supported by the Sustainable Food, Energy, and Water Systems programme, funded by National Science Foundation Research Traineeship Award 1735282.

Author information

Affiliations

Authors

Contributions

C.K.M. and R.A. developed the initial land-area estimation model, conceptualized the aglectric PV systems and estimated the power output of these systems. Y.L. refined and finalized the land-area estimation model. Y.L. and R.A. analysed the synergy of PV and wind aglectric farming, drafted the associated results and compiled the author contributions. A.P. developed the shadow depth model and simulation with consultation from P.B. and E.K.G. R.G.E. provided the schematics of land-area estimation and innovative PV systems. R.A. directed the overall research. All authors assisted in drafting and editing the final manuscript.

Corresponding author

Correspondence to Rakesh Agrawal.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–5, discussion, Tables 1–6, methods, Fig. 1 and references 1–19.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Miskin, C.K., Li, Y., Perna, A. et al. Sustainable co-production of food and solar power to relax land-use constraints. Nat Sustain 2, 972–980 (2019). https://doi.org/10.1038/s41893-019-0388-x

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing