Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Microstructure and surface control of MXene films for water purification

Abstract

Heavy metal ions (HMIs), such as those containing chromate and arsenic, are toxic and need to be removed from drinking water to protect public health. Films based on two-dimensional materials are promising regarding the removal of HMIs from water, but they typically use pressure-driven filtration. This study reports the application of two-dimensional titanium carbide (Ti3C2Tx MXene)-based films for pressure-free removal of multiple negatively and positively charged HMIs from water. The Ti3C2Tx MXene-based film’s microstructure was optimized by insertion of reduced graphene oxide between the layers, and the film’s surface was progressively hydroxylated to increase the accessibility of Ti3C2Tx, improve the film’s wettability and enhance the adsorption and reduction of HMIs. These steps synergistically improved the film’s HMI removal efficiency. This study provides a straightforward paradigm to manipulate the pivotal solid–liquid interactions for water purification under pressure-free conditions using two-dimensional materials-based films. Moreover, it could open a new vista of rationally designed, versatile, Ti3C2Tx-based films for target applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Fabrication of Ti3C2Tx-based films.
Fig. 2: Morphology and surface properties of Ti3C2Tx-based films.
Fig. 3: Performance of Ti3C2Tx-based films in pressure-free removal of HMIs.
Fig. 4: Characterizations and computational investigation of HCrO4 removal for HRM.
Fig. 5: Schematic illustration of pressure-free water purification by HMR.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon request.

References

  1. Vilela, D., Parmar, J., Zeng, Y., Zhao, Y. & Sánchez, S. Graphene-based microbots for toxic heavy metal removal and recovery from water. Nano Lett. 16, 2860–2866 (2016).

    Article  CAS  Google Scholar 

  2. Mohan, D. & Pittman, C. U. Activated carbons and low cost adsorbents for remediation of tri- and hexavalent chromium from water. J. Hazard. Mater. 137, 762–811 (2006).

    Article  CAS  Google Scholar 

  3. Peng, Y. et al. A versatile MOF-based trap for heavy metal ion capture and dispersion. Nat. Commun. 9, 187 (2018).

    Article  Google Scholar 

  4. Zhao, G., Li, J., Ren, X., Chen, C. & Wang, X. Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management. Environ. Sci. Technol. 45, 10454–10462 (2011).

    Article  CAS  Google Scholar 

  5. Perreault, F., Fonseca de Faria, A. & Elimelech, M. Environmental applications of graphene-based nanomaterials. Chem. Soc. Rev. 44, 5861–5896 (2015).

    Article  CAS  Google Scholar 

  6. Sun, P. et al. Selective ion penetration of graphene oxide membranes. ACS Nano 7, 428–437 (2013).

    Article  CAS  Google Scholar 

  7. Han, Y., Xu, Z. & Gao, C. Ultrathin graphene nanofiltration membrane for water purification. Adv. Funct. Mater. 23, 3693–3700 (2013).

    Article  CAS  Google Scholar 

  8. Hu, M. & Mi, B. Enabling graphene oxide nanosheets as water separation membranes. Environ. Sci. Technol. 47, 3715–3723 (2013).

    Article  CAS  Google Scholar 

  9. Joshi, R. K. et al. Precise and ultrafast molecular sieving through graphene oxide membranes. Science 343, 752–754 (2014).

    Article  CAS  Google Scholar 

  10. Liu, G., Jin, W. & Xu, N. Graphene-based membranes. Chem. Soc. Rev. 44, 5016–5030 (2015).

    Article  CAS  Google Scholar 

  11. Zhang, C. et al. Oxidation stability of colloidal 2D titanium carbides (MXenes). Chem. Mater. 29, 4848–4856 (2017).

    Article  CAS  Google Scholar 

  12. Kim, H. W. et al. Selective gas transport through few-layered graphene and graphene oxide membranes. Science 342, 91–95 (2013).

    Article  CAS  Google Scholar 

  13. Zhang, N., Yang, M.-Q., Liu, S., Sun, Y. & Xu, Y.-J. Waltzing with the versatile platform of graphene to synthesize composite photocatalysts. Chem. Rev. 115, 10307–10377 (2015).

    Article  CAS  Google Scholar 

  14. Shahat, A. & Trupp, S. Sensitive, selective, and rapid method for optical recognition of ultra-traces level of Hg(II), Ag(I), Au(III), and Pd(II) in electronic wastes. Sens. Actuat. B Chem. 245, 789–802 (2017).

    Article  CAS  Google Scholar 

  15. Zhu, J. et al. One-pot synthesis of magnetic graphene nanocomposites decorated with core@double-shell nanoparticles for fast chromium removal. Environ. Sci. Technol. 46, 977–985 (2012).

    Article  CAS  Google Scholar 

  16. Wang, J. et al. Preparation of molybdenum disulfide coated Mg/Al layered double hydroxide composites for efficient removal of chromium(VI). ACS Sustain. Chem. Eng. 5, 7165–7174 (2017).

    Article  Google Scholar 

  17. Peng, Q. et al. Unique lead adsorption behavior of activated hydroxyl group in two-dimensional titanium carbide. J. Am. Chem. Soc. 136, 4113–4116 (2014).

    Article  CAS  Google Scholar 

  18. Lukatskaya, M. R. et al. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 341, 1502–1505 (2013).

    Article  CAS  Google Scholar 

  19. Ghidiu, M., Lukatskaya, M. R., Zhao, M.-Q., Gogotsi, Y. & Barsoum, M. W. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 516, 78–81 (2014).

    Article  CAS  Google Scholar 

  20. Xie, X. et al. Porous heterostructured MXene/carbon nanotube composite paper with high volumetric capacity for sodium-based energy storage devices. Nano Energy 26, 513–523 (2016).

    Article  CAS  Google Scholar 

  21. Anasori, B., Lukatskaya, M. R. & Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 16098 (2017).

    Article  CAS  Google Scholar 

  22. Zhao, M.-Q. et al. Hollow MXene spheres and 3D macroporous MXene frameworks for Na-ion storage. Adv. Mater. 29, 1702410 (2017).

    Article  Google Scholar 

  23. Ren, C. E. et al. Charge- and size-selective ion sieving through Ti3C2Tx MXene membranes. J. Phys. Chem. Lett. 6, 4026–4031 (2015).

    Article  CAS  Google Scholar 

  24. Ding, L. et al. A two-dimensional lamellar membrane: MXene nanosheet stacks. Angew. Chem. Int. Ed. 56, 1825–1829 (2017).

    Article  CAS  Google Scholar 

  25. Moon, I. K., Lee, J., Ruoff, R. S. & Lee, H. Reduced graphene oxide by chemical graphitization. Nat. Commun. 1, 73 (2010).

    Article  Google Scholar 

  26. Halim, J. et al. X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes). Appl. Surf. Sci. 362, 406–417 (2016).

    Article  CAS  Google Scholar 

  27. Shah, S. A. et al. Template-free 3D titanium carbide (Ti3C2Tx) MXene particles crumpled by capillary forces. Chem. Commun. 53, 400–403 (2017).

    Article  CAS  Google Scholar 

  28. Ying, Y. et al. Two-dimensional titanium carbide for efficiently reductive removal of highly toxic chromium(VI) from water. ACS Appl. Mater. Interfaces 7, 1795–1803 (2015).

    Article  CAS  Google Scholar 

  29. Srivastava, S. K., Tyagi, R. & Pant, N. Adsorption of heavy metal ions on carbonaceous material developed from the waste slurry generated in local fertilizer plants. Water Res. 23, 1161–1165 (1989).

    Article  CAS  Google Scholar 

  30. Bader, R. F. Atoms in Molecules (Wiley Online Library, 1990).

  31. Ren, C. E. et al. Voltage gated ions sieving through 2D MXene Ti3C2Tx membranes. ACS Appl. Nano Mater. 1, 3644–3652 (2018).

    Article  CAS  Google Scholar 

  32. Chen, C. et al. Effect of glycine functionalization of 2D titanium carbide (MXene) on charge storage. J. Mater. Chem. A 6, 4617–4622 (2018).

    Article  CAS  Google Scholar 

  33. Rasool, K. et al. Antibacterial activity of Ti3C2Tx MXene. ACS Nano 10, 3674–3684 (2016).

    Article  CAS  Google Scholar 

  34. Pandey, R. P. et al. Ultrahigh-flux and fouling-resistant membranes based on layered silver/MXene (Ti3C2Tx) nanosheets. J. Mater. Chem. A 6, 3522–3533 (2018).

    Article  CAS  Google Scholar 

  35. Rasool, K. et al. Efficient antibacterial membrane based on two-dimensional Ti3C2Tx (MXene) nanosheets. Sci. Rep. 7, 1598 (2017).

    Article  Google Scholar 

  36. Lv, Z., Yang, X. & Wang, E. Highly concentrated polycations-functionalized graphene nanosheets with excellent solubility and stability, and its fast, facile and controllable assembly of multiple nanoparticles. Nanoscale 5, 663–670 (2013).

    Article  CAS  Google Scholar 

  37. Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251 (1994).

    Article  CAS  Google Scholar 

  38. Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. 136, B864 (1964).

    Article  Google Scholar 

  39. Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133 (1965).

    Article  Google Scholar 

  40. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  Google Scholar 

  41. Klimeš, J., Bowler, D. R. & Michaelides, A. Chemical accuracy for the van der Waals density functional. J. Phys. Condens. Matter 22, 022201 (2009).

    Article  Google Scholar 

  42. Klimeš, J., Bowler, D. R. & Michaelides, A. Van der Waals density functionals applied to solids. Phys. Rev. B 83, 195131 (2011).

    Article  Google Scholar 

  43. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976).

    Article  Google Scholar 

  44. Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Support from the National Natural Science Foundation of China (Nos. U1463204, 51802040, 21872029, 21802020 and 21173045), the Award Program for Minjiang Scholar Professorship, the Natural Science Foundation of Fujian Province for Distinguished Young Investigator Rolling Grant (No. 2017J07002), the Independent Research Project of the State Key Laboratory of Photocatalysis on Energy and Environment (No. 2014A05) and the First Program of Fujian Province for Top Creative Young Talents is gratefully acknowledged. Computational resources were provided by Intelligent Electronics Institute, Huazhong University of Science and Technology, China.

Author information

Authors and Affiliations

Authors

Contributions

Y.-J.X., Z.-R.T. and X.X. conceived and designed this work. X.X. conducted the experiments. C.C. and J.J. performed the computational investigations. N.Z. conducted SEM and N2 adsorption–desorption analysis. X.X. and Y.-J.X. wrote and revised the manuscript. All authors participated in discussion and reviewed the manuscript before submission.

Corresponding author

Correspondence to Yi-Jun Xu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–22, Tables 1 and 2, Notes and refs. 1–5.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, X., Chen, C., Zhang, N. et al. Microstructure and surface control of MXene films for water purification. Nat Sustain 2, 856–862 (2019). https://doi.org/10.1038/s41893-019-0373-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41893-019-0373-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing