Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

Improved estimates of forest cover and loss in the Brazilian Amazon in 2000–2017

Subjects

Abstract

The data, information and knowledge on the tropical forest area and its dynamics in the Brazilian Amazon remain contentious. We use time-series satellite images to quantify annual forest area, loss and gain in the Brazilian Amazon during 2000–2017. We find that forest area was ~15% higher than the estimate by the official Brazilian forest dataset (PRODES), but annual forest-loss rates were twice the PRODES estimates (~0.027 × 106 km2 yr–1 during 2001–2016). Forest-loss rates increased again after 2013. The El Niño and drought year (2015/2016) drove large forest area loss. The cumulative forest-loss area within the protected areas (which include ~50% of forests in the region) was ~11% of the total forest-loss area, which highlights the roles of protected areas in forest conservation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Spatial distributions of forests in the Brazilian Amazon during 2000−2017.
Fig. 2: Annual dynamics of forest areas in the Brazilian Amazon during 2000−2017.
Fig. 3: State-level forest loss, fire and water storage in the Brazilian Amazon during 2002–2016.
Fig. 4: Forest loss during 2002–2016 in the Brazilian Amazon.
Fig. 5: Annual dynamics of forest areas within PAs and non-PAs in the Brazilian Amazon during 2000–2017.

PAs maps, UN Environment / IUCN (a,b)

Fig. 6: Numbers and frequency of good-quality observations in one year from Landsat 5 TM (LT5), Landsat 7 ETM+ (LE7), LT5 + LE7 and MOD09A1 land surface reflectance in the Brazilian Amazon in 2010.

Similar content being viewed by others

Data availability

The PALSAR/MODIS forest and MOD100 forest data that support the findings of this study are available from the corresponding author upon request and will be made available to the public. The other datasets are publicly available online (Supplementary Table 6).

References

  1. Ochoa-Quintero, J. M., Gardner, T. A., Rosa, I., Ferraz, S. F. D. & Sutherland, W. J. Thresholds of species loss in Amazonian deforestation frontier landscapes. Conserv. Biol. 29, 440–451 (2015).

    Article  Google Scholar 

  2. Davidson, E. A. et al. The Amazon basin in transition. Nature 481, 321–328 (2012).

    Article  CAS  Google Scholar 

  3. Jenkins, C. N., Pimm, S. L. & Joppa, L. N. Global patterns of terrestrial vertebrate diversity and conservation. Proc. Natl Acad. Sci. USA 110, E2602–E2610 (2013).

    Article  CAS  Google Scholar 

  4. Fearnside, P. M. Deforestation in Brazilian Amazonia: history, rates, and consequences. Conserv. Biol. 19, 680–688 (2005).

    Article  Google Scholar 

  5. Nepstad, D. et al. Slowing Amazon deforestation through public policy and interventions in beef and soy supply chains. Science 344, 1118–1123 (2014).

    Article  CAS  Google Scholar 

  6. Hansen, M. C. & DeFries, R. S. Detecting long-term global forest change using continuous fields of tree-cover maps from 8-km advanced very high resolution radiometer (AVHRR) data for the years 1982–99. Ecosystems 7, 695–716 (2004).

    Article  Google Scholar 

  7. Souza, C., Firestone, L., Silva, L. M. & Roberts, D. Mapping forest degradation in the Eastern Amazon from SPOT 4 through spectral mixture models. Remote Sens. Environ. 87, 494–506 (2003).

    Article  Google Scholar 

  8. Hansen, M. C., Shimabukuro, Y. E., Potapov, P. & Pittman, K. Comparing annual MODIS and PRODES forest cover change data for advancing monitoring of Brazilian forest cover. Remote Sens. Environ. 112, 3784–3793 (2008).

    Article  Google Scholar 

  9. Friedl, M. A. et al. MODIS Collection 5 global land cover: algorithm refinements and characterization of new datasets. Remote Sens. Environ. 114, 168–182 (2010).

    Article  Google Scholar 

  10. Skole, D. & Tucker, C. Tropical deforestation and habitat fragmentation in the Amazon: satellite data from 1978 to 1988. Science 260, 1905–1910 (1993).

    Article  CAS  Google Scholar 

  11. Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).

    Article  CAS  Google Scholar 

  12. Qin, Y. et al. Annual dynamics of forest areas in South America during 2007–2010 at 50-m spatial resolution. Remote Sens. Environ. 201, 73–87 (2017).

    Article  Google Scholar 

  13. Reiche, J. et al. Combining satellite data for better tropical forest monitoring. Nat. Clim. Change 6, 120–122 (2016).

    Article  Google Scholar 

  14. Rajão, R., Moutinho, P. & Soares, L. The rights and wrongs of Brazil’s forest monitoring systems. Conserv. Lett. 10, 495–496 (2017).

    Article  Google Scholar 

  15. Richards, P., Arima, E., VanWey, L., Cohn, A. & Bhattarai, N. Are Brazil’s deforesters avoiding detection? Conserv. Lett. 10, 470–476 (2017).

    Article  Google Scholar 

  16. Asner, G. P. et al. Selective logging in the Brazilian Amazon. Science 310, 480–482 (2005).

    Article  CAS  Google Scholar 

  17. Tyukavina, A. et al. Types and rates of forest disturbance in Brazilian Legal Amazon, 2000–2013. Sci. Adv. 3, e1601047 (2017).

    Article  Google Scholar 

  18. Achard, F. & Hansen, M. C. Global Forest Monitoring from Earth Observation (Taylor & Francis, 2012).

  19. Shimada, M. et al. New global forest/non-forest maps from ALOS PALSAR data (2007–2010). Remote Sens. Environ. 155, 13–31 (2014).

    Article  Google Scholar 

  20. Reiche, J. et al. Feature level fusion of multi-temporal ALOS PALSAR and landsat data for mapping and monitoring of tropical deforestation and forest degradation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 6, 2159–2173 (2013).

    Article  Google Scholar 

  21. Qin, Y. et al. Quantifying annual changes in built-up area in complex urban-rural landscapes from analyses of PALSAR and Landsat images. ISPRS J. Photogramm. Remote Sens. 124, 89–105 (2017).

    Article  Google Scholar 

  22. McDowell, N. G. et al. Global satellite monitoring of climate-induced vegetation disturbances. Trends Plant Sci. 20, 114–123 (2015).

    Article  CAS  Google Scholar 

  23. Wu, J. et al. Biological processes dominate seasonality of remotely sensed canopy greenness in an Amazon evergreen forest. New Phytol. 217, 1507–1520 (2018).

    Article  Google Scholar 

  24. Macedo, M. N. et al. Decoupling of deforestation and soy production in the southern Amazon during the late 2000s. Proc. Natl Acad. Sci. USA 109, 1341–1346 (2012).

    Article  CAS  Google Scholar 

  25. le Maire, G., Dupuy, S., Nouvellon, Y., Loos, R. A. & Hakarnada, R. Mapping short-rotation plantations at regional scale using MODIS time series: case of eucalypt plantations in Brazil. Remote Sens. Environ. 152, 136–149 (2014).

    Article  Google Scholar 

  26. Xiao, X. M., Biradar, C. M., Czarnecki, C., Alabi, T. & Keller, M. A simple algorithm for large-scale mapping of evergreen forests in tropical America, Africa and Asia. Remote Sens. 1, 355–374 (2009).

    Article  Google Scholar 

  27. Qin, Y. et al. Mapping forests in monsoon Asia with ALOS PALSAR 50-m mosaic images and MODIS imagery in 2010. Sci. Rep. 6, 20880 (2016).

    Article  CAS  Google Scholar 

  28. Qin, Y. W. et al. Forest cover maps of China in 2010 from multiple approaches and data sources: PALSAR, Landsat, MODIS, FRA and NFI. ISPRS J. Photogramm. Remote Sens. 109, 1–16 (2015).

    Article  Google Scholar 

  29. Land cover CCI Product User Guide v.2 (European Space Agency, 2016).

  30. Nepstad, D. et al. The end of deforestation in the Brazilian Amazon. Science 326, 1350–1351 (2009).

    Article  CAS  Google Scholar 

  31. Morton, D. C. et al. Cropland expansion changes deforestation dynamics in the southern Brazilian Amazon. Proc. Natl Acad. Sci. USA 103, 14637–14641 (2006).

    Article  CAS  Google Scholar 

  32. McManus, C. et al. Dynamics of cattle production in Brazil. PLoS ONE 11, e0147138 (2016).

    Article  Google Scholar 

  33. Brando, P. M. et al. Abrupt increases in Amazonian tree mortality due to drought–fire interactions. Proc. Natl Acad. Sci. USA 111, 6347–6352 (2014).

    Article  CAS  Google Scholar 

  34. Soares, B. et al. Role of Brazilian Amazon protected areas in climate change mitigation. Proc. Natl Acad. Sci. USA 107, 10821–10826 (2010).

    Article  Google Scholar 

  35. Nolte, C., Agrawal, A., Silvius, K. M. & Soares, B. S. Governance regime and location influence avoided deforestation success of protected areas in the Brazilian Amazon. Proc. Natl Acad. Sci. USA 110, 4956–4961 (2013).

    Article  CAS  Google Scholar 

  36. Bustamante, M. M. C. et al. Are Brazil deforesters avoiding detection? Reply to Richards et al. 2016. Conserv. Lett. 10, 493–494 (2017).

    Article  Google Scholar 

  37. Rodrigues, A., Marcal, A. R. S., Furlan, D., Ballester, M. V. & Cunha, M. Land cover map production for Brazilian Amazon using NDVI SPOT VEGETATION time series. Can. J. Remote Sens. 39, 277–289 (2013).

    Article  Google Scholar 

  38. Brazil Market Overview: Timber and Forest Products (Hancock Timber Resource Group, 2014).

  39. Barlow, J. et al. Diversity and composition of fruit-feeding butterflies in tropical Eucalyptus plantations. Biodivers. Conserv. 17, 1089–1104 (2008).

    Article  Google Scholar 

  40. Marsden, S. J., Whiffin, M. & Galetti, M. Bird diversity and abundance in forest fragments and Eucalyptus plantations around an Atlantic forest reserve, Brazil. Biodivers. Conserv. 10, 737–751 (2001).

    Article  Google Scholar 

  41. Barlow, J. et al. Quantifying the biodiversity value of tropical primary, secondary, and plantation forests. Proc. Natl Acad. Sci. USA 104, 18555–18560 (2007).

    Article  CAS  Google Scholar 

  42. Coelho, M., Juen, L. & Mendes-Oliveira, A. C. The role of remnants of Amazon savanna for the conservation of neotropical mammal communities in eucalyptus plantations. Biodivers. Conserv. 23, 3171–3184 (2014).

    Article  Google Scholar 

  43. Fearnside, P. M. Brazilian politics threaten environmental policies. Science 353, 746–748 (2016).

    Article  CAS  Google Scholar 

  44. Freitas, F. L. M. et al. Potential increase of legal deforestation in Brazilian Amazon after Forest Act revision. Nat. Sustain. 1, 665–670 (2018).

    Article  Google Scholar 

  45. Shimada, M., Isoguchi, O., Tadono, T. & Isono, K. PALSAR radiometric and geometric calibration. IEEE Trans. Geosci. Remote Sens. 47, 3915–3932 (2009).

    Article  Google Scholar 

  46. Carreiras, J. M. B., Vasconcelos, M. J. & Lucas, R. M. Understanding the relationship between aboveground biomass and ALOS PALSAR data in the forests of Guinea-Bissau (West Africa). Remote Sens. Environ. 121, 426–442 (2012).

    Article  Google Scholar 

  47. Cartus, O., Santoro, M. & Kellndorfer, J. Mapping forest aboveground biomass in the Northeastern United States with ALOS PALSAR dual-polarization L-band. Remote Sens. Environ. 124, 466–478 (2012).

    Article  Google Scholar 

  48. Ma, J. et al. Estimating aboveground biomass of broadleaf, needleleaf, and mixed forests in Northeastern China through analysis of 25-m ALOS/PALSAR mosaic data. For. Ecol. Manage. 389, 199–210 (2017).

    Article  Google Scholar 

  49. Huete, A. R., Liu, H. Q., Batchily, K. & vanLeeuwen, W. A comparison of vegetation indices over a global set of TM images for EOS-MODIS. Remote Sens. Environ. 59, 440–451 (1997).

    Article  Google Scholar 

  50. Xiao, X. et al. Observation of flooding and rice transplanting of paddy rice fields at the site to landscape scales in China using VEGETATION sensor data. Int J. Remote Sens. 23, 3009–3022 (2002).

    Article  Google Scholar 

  51. Huffman, G. et al. Integrated Multi-satellitE Retrievals for GPM (IMERG) Version 4.4 (NASA’s Precipitation Processing Center, 2014); ftp://arthurhou.pps.eosdis.nasa.gov/gpmdata/

  52. Swenson, S. C. GRACE monthly land water mass grids NETCDF RELEASE 5.0. CA, USA (NASA Jet Propulsion Laboratory, 2012).

  53. Landerer, F. W. & Swenson, S. C. Accuracy of scaled GRACE terrestrial water storage estimates. Water Resour. Res. 48, 4531 (2012).

  54. Giglio, L. & Justice, C. MOD14A2 MODIS/Terra Thermal Anomalies/Fire 8-Day L3 Global 1km SIN Grid V006 (NASA EOSDIS Land Processes DAAC, 2015); https://doi.org/10.5067/MODIS/MOD14A2.006

  55. Giglio, L., Justice, C., Boschetti, L. & Roy, D. MCD64A1 MODIS/Terra+Aqua Burned Area Monthly L3 Global 500m SIN Grid V006 (NASA EOSDIS Land Processes DAAC, 2015); https://doi.org/10.5067/MODIS/MCD64A1.006

  56. Pengra, B., Long, J., Dahal, D., Stehman, S. V. & Loveland, T. R. A global reference database from very high resolution commercial satellite data and methodology for application to Landsat derived 30 m continuous field tree cover data. Remote Sens. Environ. 165, 234–248 (2015).

    Article  Google Scholar 

  57. Olofsson, P. et al. A global land-cover validation data set. Part I: fundamental design principles. Int. J. Remote Sens. 33, 5768–5788 (2012).

    Article  Google Scholar 

  58. Stehman, S. V., Olofsson, P., Woodcock, C. E., Herold, M. & Friedl, M. A. A global land-cover validation data set. Part II: augmenting a stratified sampling design to estimate accuracy by region and land-cover class. Int. J. Remote Sens. 33, 6975–6993 (2012).

    Article  Google Scholar 

  59. Didan, K. MOD13Q1 MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid V006 (NASA EOSDIS Land Processes DAAC, 2015); https://doi.org/10.5067/MODIS/MOD13Q1.006

  60. Vermote, E. MOD09A1 MODIS/Terra Surface Reflectance 8-Day L3 Global 500m SIN Grid V006 (NASA EOSDIS Land Processes DAAC, 2015); https://doi.org/10.5067/MODIS/MOD09A1.006

Download references

Acknowledgements

This study is supported in part by research grants from NASA Land Use and Land Cover Change programme (grant no. NNX14AD78G), NASA Geostationary Carbon Cycle Observatory (GeoCarb) Mission (GeoCarb Contract no. 80LARC17C0001), the Inter-American Institute for Global Change Research (IAI) (grant no. CRN3076), which is supported by the US National Science Foundation (grant no. GEO-1128040) and NSF EPSCoR project (no. IIA-1301789).

Author information

Authors and Affiliations

Authors

Contributions

X.X., Y.Q. and J.D. designed the study. Y.Q. and X.X. conducted the analysis with support from J.D., C.B. and F.L. Y.S. and E.A. provided the PRODES forest datasets from the INPE. Y.Q. and X.X. led the writing of the manuscript. R.D., J.D., Y.Z., X.W., J.W., Z.Z., Z.S. and B.M. contributed to the result interpretation and discussion as well as manuscript editing.

Corresponding authors

Correspondence to Xiangming Xiao or Jinwei Dong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods, Supplementary references 1–12, Supplementary Figs. 1–19, Supplementary Tables 1–6

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, Y., Xiao, X., Dong, J. et al. Improved estimates of forest cover and loss in the Brazilian Amazon in 2000–2017. Nat Sustain 2, 764–772 (2019). https://doi.org/10.1038/s41893-019-0336-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41893-019-0336-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing