Anthropocene risk


The potential consequences of cross-scale systemic environmental risks with global effects are increasing. We argue that current descriptions of globally connected systemic risk poorly capture the role of human–environment interactions. This creates a bias towards solutions that ignore the new realities of the Anthropocene. We develop an integrated concept of what we denote Anthropocene risk—that is, risks that: emerge from human-driven processes; interact with global social–ecological connectivity; and exhibit complex, cross-scale relationships. To illustrate this, we use four cases: moisture recycling teleconnections, aquaculture and stranded assets, biome migration in the Sahel, and sea-level rise and megacities. We discuss the implications of Anthropocene risk across several research frontiers, particularly in the context of supranational power, environmental and social externalities and possible future Anthropocene risk governance. We conclude that decision makers must navigate this new epoch with new tools, and that Anthropocene risk contributes conceptual guidance towards a more sustainable and just future.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Conceptual diagram of how Anthropocene risk interacts with more traditional notions of risk.
Fig. 2: Harvesting and imports of palm oil for the period 1961 to 2011.
Fig. 3: System diagrams.


  1. 1.

    Frank, A. B. et al. Dealing with femtorisks in international relations. Proc. Natl Acad. Sci. USA 111, 17356–17362 (2014).

  2. 2.

    Walker, B. et al. Looming global-scale failures and missing institutions. Science 325, 1345–1346 (2009).

  3. 3.

    Homer-Dixon, T. et al. Synchronous failure: the emerging causal architecture of global crisis. Ecol. Soc. 20, 6 (2015).

  4. 4.

    Rocha, J. C., Peterson, G., Bodin, Ö. & Levin, S. Cascading regime shifts within and across scales. Science 362, 1379–1383 (2018).

  5. 5.

    Galaz, V. et al. Global governance dimensions of globally networked risks: the state of the art in social science research. Risk Hazards Crisis Publ. Policy 8, 4–27 (2017).

  6. 6.

    Galaz, V., Crona, B., Dauriach, A., Scholtens, B. & Steffen, W. Finance and the Earth system—exploring the links between financial actors and non-linear changes in the climate system. Glob. Environ. Change 53, 296–302 (2018).

  7. 7.

    Liu, J. et al. Framing sustainability in a telecoupled world. Ecol. Soc. 18, 26 (2013).

  8. 8.

    Centeno, M. A., Nag, M., Patterson, T. S., Shaver, A. & Windawi, A. J. The emergence of global systemic risk. Annu. Rev. Sociol. 41, 65–85 (2015).

  9. 9.

    Helbing, D. Globally networked risks and how to respond. Nature 497, 51–59 (2013).

  10. 10.

    O’Neill, B. C. et al. IPCC reasons for concern regarding climate change risks. Nat. Clim. Change 7, 28–37 (2017).

  11. 11.

    The Global Risks Report 2018 13th edn (World Economic Forum, 2018).

  12. 12.

    Hamm, B. The study of futures, and the analysis of power. Futures 42, 1007–1018 (2010).

  13. 13.

    Hamann, M. et al. Inequality and the biosphere. Annu. Rev. Environ. Resour. 43, 61–83 (2018).

  14. 14.

    Kabeer, N. in Challenging Inequalities: Pathways to a Just World 55–58 (ISSC, IDS and UNESCO, 2016).

  15. 15.

    Steffen, W., Broadgate, W., Deutsch, L., Gaffney, O. & Ludwig, C. The trajectory of the Anthropocene: the Great Acceleration. Anthr. Rev. 2, 81–98 (2015).

  16. 16.

    Sterner, T. et al. Policy design for the Anthropocene. Nat. Sustain. 2, 14–21 (2019).

  17. 17.

    Barnosky, A. D. et al. Approaching a state shift in Earth’s biosphere. Nature 486, 52–58 (2012).

  18. 18.

    Rockström, J. et al. A safe operating space for humanity. Nature 461, 472–475 (2009).

  19. 19.

    Byravan, S. & Rajan, S. C. The ethical implications of sea-level rise due to climate change. Ethics Int. Aff. 24, 239–260 (2010).

  20. 20.

    Mann, C. C. 1493: Uncovering the New World Columbus Created (Knopf Doubleday, 2011).

  21. 21.

    Dalin, C., Wada, Y., Kastner, T. & Puma, M. J. Groundwater depletion embedded in international food trade. Nature 543, 700–704 (2017).

  22. 22.

    Eriksson, H. et al. Contagious exploitation of marine resources. Front. Ecol. Environ. 13, 435–440 (2015).

  23. 23.

    Levin, S. et al. Social-ecological systems as complex adaptive systems: modeling and policy implications. Environ. Dev. Econ. 18, 111–132 (2013).

  24. 24.

    Scheffer, M., Carpenter, S., Foley, J. A., Folke, C. & Walker, B. Catastrophic shifts in ecosystems. Nature 413, 591–596 (2001).

  25. 25.

    Famiglietti, J. S. The global groundwater crisis. Nat. Clim. Change 4, 945–948 (2014).

  26. 26.

    van der Ent, R. J., Savenije, H. H. G., Schaefli, B. & Steele-Dunne, S. C. Origin and fate of atmospheric moisture over continents. Water Resour. Res. 46, W09525 (2010).

  27. 27.

    de Vrese, P., Hagemann, S. & Claussen, M. Asian irrigation, African rain: remote impacts of irrigation. Geophys. Res. Lett. 43, 3737–3745 (2016).

  28. 28.

    Mortimore, M. J. & Adams, W. M. Farmer adaptation, change and ‘crisis’ in the Sahel. Glob. Environ. Change 11, 49–57 (2001).

  29. 29.

    Gharibvand, H. K., Azadi, H. & Witlox, F. Exploring appropriate livelihood alternatives for sustainable rangeland management. Rangel. J. 37, 345–356 (2015).

  30. 30.

    Lade, S. J., Haider, L. J., Engström, G. & Schlüter, M. Resilience offers escape from trapped thinking on poverty alleviation. Sci. Adv. 3, e1603043 (2017).

  31. 31.

    Troell, M. et al. Does aquaculture add resilience to the global food system? Proc. Natl Acad. Sci. USA 111, 13257–13263 (2014).

  32. 32.

    Caldecott, B., Howarth, N. & McSharry, P. Stranded Assets in Agriculture: Protecting Value from Environment-Related Risks (Smith School of Enterprise and the Environment, University of Oxford, 2013).

  33. 33.

    Tran, P. & Shaw, R. Towards an integrated approach of disaster and environment management: a case study of Thua Thien Hue province, central Viet Nam. Environ. Hazards 7, 271–282 (2007).

  34. 34.

    Henriksson, P. J. G. et al. Unpacking factors influencing antimicrobial use in global aquaculture and their implication for management: a review from a systems perspective. Sustain. Sci. 13, 1105–1120 (2018).

  35. 35.

    Leung, T. L. F. & Bates, A. E. More rapid and severe disease outbreaks for aquaculture at the tropics: implications for food security. J. Appl. Ecol. 50, 215–222 (2013).

  36. 36.

    Loarie, S. R. et al. The velocity of climate change. Nature 462, 1052–1055 (2009).

  37. 37.

    Higgins, P. A. T. & Harte, J. Biophysical and biogeochemical responses to climate change depend on dispersal and migration. BioScience 56, 407–417 (2006).

  38. 38.

    Cottrell, R. S. et al. Food production shocks across land and sea. Nat. Sustain. 2, 130–137 (2019).

  39. 39.

    Sultan, B. et al. Assessing climate change impacts on sorghum and millet yields in the Sudanian and Sahelian savannas of West Africa. Environ. Res. Lett. 8, 014040 (2013).

  40. 40.

    Brooks, N. Drought in the African Sahel: Long-Term Perspectives and Future Prospects Working Paper No. 61 (Tyndall Centre for Climate Change Research, 2004).

  41. 41.

    Breshears, D. D., López-Hoffman, L. & Graumlich, L. J. When ecosystem services crash: preparing for big, fast, patchy climate change. Ambio 40, 256–263 (2011).

  42. 42.

    McGranahan, G., Balk, D. & Anderson, B. The rising tide: assessing the risks of climate change and human settlements in low elevation coastal zones. Environ. Urban. 19, 17–37 (2007).

  43. 43.

    Wuebbles, D. J., Fahey, D. W. & Hibbard, K. A. Climate Science Special Report: Fourth National Climate Assessment Vol. 1 (US Global Change Research Program, 2017).

  44. 44.

    Dutton, A. et al. Sea-level rise due to polar ice-sheet mass loss during past warm periods. Science 349, aaa4019 (2015).

  45. 45.

    Church, J. A. et al. Sea-level rise by 2100. Science 342, 1445 (2013).

  46. 46.

    Goodell, J. The Water Will Come: Rising Seas, Sinking Cities, and the Remaking of the Civilized World (Little, Brown and Company, 2017).

  47. 47.

    Werrell, C. E. & Femia, F. Climate Change, the erosion of state sovereignty, and world order. Brown J. World Aff. 22, 221–235 (2015).

  48. 48.

    Linkov, I. et al. Tiered approach to resilience assessment. Risk Anal. 53, 1772–1780 (2018).

  49. 49.

    Biermann, F. et al. Earth system governance: a research framework. Int. Environ. Agreem. Polit. Law Econ. 10, 277–298 (2010).

  50. 50.

    Kotzé, L. J. Rethinking global environmental law and governance in the Anthropocene. J. Energy Nat. Resour. Law 32, 121–156 (2014).

  51. 51.

    Hancock, A.-M. When multiplication doesn’t equal quick addition: examining intersectionality as a research paradigm. Perspect. Politics 5, 63–79 (2007).

  52. 52.

    Di Chiro, G. in The Oxford Handbook of Environmental Political Theory (eds Gabrielson, T. et al.) 1–23 (Oxford Univ. Press, 2016).

  53. 53.

    Inoue, C. Y. A. & Moreira, P. F. Many worlds, many nature(s), one planet: indigenous knowledge in the Anthropocene. Rev. Bras. Polít. Int. 59, e009 (2016).

  54. 54.

    Romm, N. R. A. in Balancing Individualism and Collectivism: Social and Environmental Justice (eds McIntyre-Mills, J. et al.) 1–17 (Springer, 2018).

  55. 55.

    Österblom, H. et al. Transnational corporations as ‘keystone actors’ in marine ecosystems. PLoS ONE 10, e0127533 (2015).

  56. 56.

    Blasiak, R., Jouffray, J.-B., Wabnitz, C. C. C., Sundström, E. & Österblom, H. Corporate control and global governance of marine genetic resources. Sci. Adv. 4, eaar5237 (2018).

  57. 57.

    Renwick, A., Islam, M. M. & Thomson, S. Power in global agriculture: economics, politics, and natural resources. Int. J. Agric. Manag. 2, 31–48 (2012).

  58. 58.

    Varkkey, H. Oil palm plantations and transboundary haze: patronage networks and land licensing in Indonesia’s peatlands. Wetlands 33, 679–690 (2013).

  59. 59.

    Marschke, M. & Vandergeest, P. Slavery scandals: unpacking labour challenges and policy responses within the off-shore fisheries sector. Mar. Policy 68, 39–46 (2016).

Download references


The authors would like to thank K. Pintauro and A. Sundin for their support in the development of the figures in this manuscript. P.W.K. was partly funded by the GRAID programme, V.G. was partly funded by the Beijer Institute of Ecological Economics programme ‘Governance, Complexity, and Technology’ and S.E.C. was partly funded by European Research Council Advanced Grant 2016, Earth Resilience in the Anthropocene Project 743080.

Author information

The design and development of the manuscript were co-led by authors P.W.K., V.G., M.D., N.M., C.F., M.N. and S.E.C. The writing and revision process was led primarily by P.W.K.

Correspondence to Patrick W. Keys.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Further reading