Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Ozone depletion, ultraviolet radiation, climate change and prospects for a sustainable future

Abstract

Changes in stratospheric ozone and climate over the past 40-plus years have altered the solar ultraviolet (UV) radiation conditions at the Earth’s surface. Ozone depletion has also contributed to climate change across the Southern Hemisphere. These changes are interacting in complex ways to affect human health, food and water security, and ecosystem services. Many adverse effects of high UV exposure have been avoided thanks to the Montreal Protocol with its Amendments and Adjustments, which have effectively controlled the production and use of ozone-depleting substances. This international treaty has also played an important role in mitigating climate change. Climate change is modifying UV exposure and affecting how people and ecosystems respond to UV; these effects will become more pronounced in the future. The interactions between stratospheric ozone, climate and UV radiation will therefore shift over time; however, the Montreal Protocol will continue to have far-reaching benefits for human well-being and environmental sustainability.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: The Sustainable Development Goals (SDGs) addressed by the UNEP Environmental Effects Assessment Panel 2018 Quadrennial Report.
Fig. 2: Links between stratospheric ozone depletion, UV radiation and climate change.

References

  1. Crutzen, P. J. The influence of nitrogen oxides on the atmospheric ozone content. Q. J. Royal Meteorol. Soc. 96, 320–325 (1970).

    Article  Google Scholar 

  2. Molina, M. J. & Rowland, F. S. Stratospheric sink for chlorofluoromethanes: chlorine atomic-catalysed destruction of ozone. Nature 249, 810–812 (1974).

    CAS  Article  Google Scholar 

  3. Farman, J. C., Gardiner, B. G. & Shanklin, J. D. Large losses of ozone in Antarctica reveal seasonal ClOx/NOx interaction. Nature 315, 207–210 (1985).

    CAS  Article  Google Scholar 

  4. Watson, R. T., Prather, M. J. & Kurylo, M. J. Present State of Knowledge of the Upper Atmosphere 1988: An Assessment Report. NASA Reference Publication 1208 (NASA Office of Space Science and Applications, 1988).

  5. Synthesis Report: Integration of the Four Assessment Panels Reports by the Open-Ended Working Group of the Parties to the Montreal Protocol (OEWG, 1989).

  6. Solomon, S., Garcia, R. R., Rowland, F. S. & Wuebbles, D. J. On the depletion of Antarctic ozone. Nature 321, 755–758 (1986).

    CAS  Article  Google Scholar 

  7. Solomon, S. Progress towards a quantitative understanding of Antarctic ozone depletion. Nature 347, 347–354 (1990).

    CAS  Article  Google Scholar 

  8. Andersen, S. O. & Sarma, K. M. Protecting the Ozone Layer: The United Nations History (Earthscan, 2012).

  9. Newman, P. A. et al. What would have happened to the ozone layer if chlorofluorocarbons (CFCs) had not been regulated? Atmos. Chem. Phys. 9, 2113–2128 (2009).

    CAS  Article  Google Scholar 

  10. Mäder, J. A. et al. Evidence for the effectiveness of the Montreal Protocol to protect the ozone layer. Atmos. Chem. Phys. 10, 12161–12171 (2010).

    Article  CAS  Google Scholar 

  11. Newman, P. A. & McKenzie, R. UV impacts avoided by the Montreal Protocol. Photochem. Photobiol. Sci. 10, 1152–1160 (2011).

    CAS  Article  Google Scholar 

  12. Scientific Assessment of Ozone Depletion: 2018, Global Ozone Research and Monitoring Project. Report no. 58.88 (WMO, 2018).

  13. Updating Ozone Calculations and Emissions Profiles for Use in the Atmospheric and Health Effects Framework Model (USEPA, 2015).

  14. Myhre, G. et al. in IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 661–740 (Cambridge Univ. Press, 2013).

  15. Garcia, R. R., Kinnison, D. E. & Marsh, D. R. ‘World Avoided’ simulations with the Whole Atmosphere Community Climate Model. J. Geophys. Res. Atm. 117, D23303 (2012).

    Google Scholar 

  16. Ripley, K. & Verkuijl, C. ‘Ozone family’ delivers landmark deal for the climate. Environ. Policy Law 46, 371 (2016).

    Google Scholar 

  17. Xu, Y., Zaelke, D., Velders, G. J. M. & Ramanathan, V. The role of HFCs in mitigating 21st century climate change. Atmos. Chem. Phys. 13, 6083–6089 (2013).

    Article  CAS  Google Scholar 

  18. Chipperfield, M. P. et al. Quantifying the ozone and ultraviolet benefits already achieved by the Montreal Protocol. Nat. Commun. 6, 7233 (2015).

    CAS  Article  Google Scholar 

  19. Velders, G. J., Andersen, S. O., Daniel, J. S., Fahey, D. W. & McFarland, M. The importance of the Montreal Protocol in protecting climate. Proc. Natl Acad.Sci. USA 104, 4814–4819 (2007).

    CAS  Article  Google Scholar 

  20. Papanastasiou, D. K., Beltrone, A., Marshall, P. & Burkholder, J. B. Global warming potential estimates for the C1–C3 hydrochlorofluorocarbons (HCFCs) included in the Kigali Amendment to the Montreal Protocol. Atmos. Chem. Phys. 18, 6317–6330 (2018).

    CAS  Article  Google Scholar 

  21. IPCC: Summary for Policymakers. In Global Warming of 1.5 °C. IPCC Special Report (IPCC, 2018).

  22. Andrady, A. L., Pandey, K. K. & Heikkilä, A. M. Interactive effects of solar UV radiation and climate change on material damage. Photochem. Photobiol. Sci. 18, 804–825 (2019).

    CAS  Article  Google Scholar 

  23. Lucas, R. M. et al. Human health in relation to exposure to solar ultraviolet radiation under changing stratospheric ozone and climate. Photochem. Photobiol. Sci. 18, 641–680 (2019).

    CAS  Article  Google Scholar 

  24. Bornman, J. F. et al. Linkages between stratospheric ozone, UV radiation and climate change and their implications for terrestrial ecosystems. Photochem. Photobiol. Sci. 18, 681–716 (2019).

    CAS  Article  Google Scholar 

  25. Williamson, C. E. et al. The interactive effects of stratospheric ozone depletion, UV radiation, and climate change on aquatic ecosystems. Photochem. Photobiol. Sci. 18, 717–746 (2019).

    CAS  Article  Google Scholar 

  26. Sulzberger, B., Austin, A. T., Cory, R. M., Zepp, R. G. & Paul, N. D. Solar UV radiation in a changing world: roles of cryosphere–land–water–atmosphere interfaces in global biogeochemical cycles. Photochem. Photobiol. Sci. 18, 747–774 (2019).

    CAS  Article  Google Scholar 

  27. Bais, A. F. et al. Ozone–climate interactions and effects on solar ultraviolet radiation. Photochem. Photobiol. Sci. 18, 602–640 (2019).

    CAS  Article  Google Scholar 

  28. Wilson, S. R., Madronich, S., Longstreth, J. D. & Solomon, K. R. Interactive effects of changing stratospheric ozone and climate on composition of the troposphere, air quality, and consequences for human and ecosystem health. Photochem. Photobiol. Sci. 18, 775–803 (2019).

    CAS  Article  Google Scholar 

  29. IPCC Climate Change 2014: Synthesis Report (eds Core Writing Team, Pachauri, R. K. & Meyer L. A.) (IPCC, 2014).

  30. Arblaster, J. et al. In Scientific Assessment of Ozone Depletion: 2014. Global Ozone Research and Monitoring Project Report No. 55, Ch. 4 (WMO, 2014).

  31. Langematz, U. et al. In Scientific Assessment of Ozone Depletion: 2018. Global Ozone Research and Monitoring Project Report No. 58, Ch. 4 (WMO, 2018).

  32. Clem, K. R., Renwick, J. A. & McGregor, J. Relationship between eastern tropical Pacific cooling and recent trends in the Southern Hemisphere zonal-mean circulation. Clim. Dyn. 49, 113–129 (2017).

    Article  Google Scholar 

  33. Lim, E. P. et al. The impact of the Southern Annular Mode on future changes in Southern Hemisphere rainfall. Geophys. Res. Lett. 43, 7160–7167 (2016).

    Article  Google Scholar 

  34. Holz, A. et al. Southern Annular Mode drives multicentury wildfire activity in southern South America. Proc. Natl Acad. Sci. USA 114, 9552–9557 (2017).

    CAS  Article  Google Scholar 

  35. Kostov, Y. et al. Fast and slow responses of Southern Ocean sea surface temperature to SAM in coupled climate models. Clim. Dyn. 48, 1595–1609 (2017).

    Article  Google Scholar 

  36. Oliveira, F. N. M. & Ambrizzi, T. The effects of ENSO-types and SAM on the large-scale southern blockings. Int. J. Climatol. 37, 3067–3081 (2017).

    Article  Google Scholar 

  37. Robinson, S. A. et al. Rapid change in East Antarctic terrestrial vegetation in response to regional drying. Nat. Clim. Change 8, 879–884 (2018).

    CAS  Article  Google Scholar 

  38. Robinson, S. A. & Erickson, D. J. III Not just about sunburn—the ozone hole’s profound effect on climate has significant implications for Southern Hemisphere ecosystems. Glob. Change Biol. 21, 515–527 (2015).

    Article  Google Scholar 

  39. Morgenstern, O. et al. Review of the global models used within phase 1 of the Chemistry–Climate Model Initiative (CCMI). Geosci. Model Dev. 10, 639–671 (2017).

    Article  Google Scholar 

  40. Williamson, C. E. et al. Solar ultraviolet radiation in a changing climate. Nat. Clim. Change 4, 434–441 (2014).

    Article  Google Scholar 

  41. IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

  42. López, M. L., Palancar, G. G. & Toselli, B. M. Effects of stratocumulus, cumulus, and cirrus clouds on the UV-B diffuse to global ratio: experimental and modeling results. J. Quant. Spectrosc. Radiat. Transf. 113, 461–469 (2012).

    Article  CAS  Google Scholar 

  43. Feister, U., Cabrol, N. & Häder, D. UV irradiance enhancements by scattering of solar radiation from clouds. Atmosphere 6, 1211–1228 (2015).

    CAS  Article  Google Scholar 

  44. Williamson, C. E. et al. Sentinel responses to droughts, wildfires, and floods: effects of UV radiation on lakes and their ecosystem services. Front. Ecol. Environ. 14, 102–109 (2016).

    Article  Google Scholar 

  45. Gies, P., Roy, C., Toomey, S. & Tomlinson, D. Ambient solar UVR, personal exposure and protection. J. Epidemiol. 9, S115–S122 (1999).

    CAS  Article  Google Scholar 

  46. Xiang, F. et al. Weekend personal ultraviolet radiation exposure in four cities in Australia: influence of temperature, humidity and ambient ultraviolet radiation. J. Photochem. Photobiol. B 143, 74–81 (2015).

    CAS  Article  Google Scholar 

  47. Cuthill, I. C. et al. The biology of color. Science 357, eaan0221 (2017).

    Article  CAS  Google Scholar 

  48. Mazza, C. A., Izaguirre, M. M., Curiale, J. & Ballaré, C. L. A look into the invisible. Ultraviolet-B sensitivity in an insect (Caliothrips phaseoli) revealed through a behavioural action spectrum. Proc. R. Soc. B 277, 367–373 (2010).

    CAS  Article  Google Scholar 

  49. IPCC Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Field, C. B. et al.) (Cambridge Univ. Press, 2014).

  50. Steinbauer, M. J. et al. Accelerated increase in plant species richness on mountain summits is linked to warming. Nature 556, 231–234 (2018).

    CAS  Article  Google Scholar 

  51. Urmy, S. S. et al. Vertical redistribution of zooplankton in an oligotrophic lake associated with reduction in ultraviolet radiation by wildfire smoke. Geophys. Res. Lett. 43, 3746–3753 (2016).

    Article  Google Scholar 

  52. Ma, Z., Li, W., Shen, A. & Gao, K. Behavioral responses of zooplankton to solar radiation changes: in situ evidence. Hydrobiologia 711, 155–163 (2013).

    Article  Google Scholar 

  53. Leach, T. H., Williamson, C. E., Theodore, N., Fischer, J. M. & Olson, M. H. The role of ultraviolet radiation in the diel vertical migration of zooplankton: an experimental test of the transparency-regulator hypothesis. J. Plankton Res. 37, 886–896 (2015).

    Article  Google Scholar 

  54. Fischer, J. M. et al. Diel vertical migration of copepods in mountain lakes: the changing role of ultraviolet radiation across a transparency gradient. Limnol. Oceanogr. 60, 252–262 (2015).

    Article  Google Scholar 

  55. Cohen, J. M., Lajeunesse, M. J. & Rohr, J. R. A global synthesis of animal phenological responses to climate change. Nat. Clim. Change 8, 224–228 (2018).

    Article  Google Scholar 

  56. Predick, K. I. et al. UV-B radiation and shrub canopy effects on surface litter decomposition in a shrub-invaded dry grassland. J. Arid Environ. 157, 13–21 (2018).

    Article  Google Scholar 

  57. Kauko, H. M. et al. Windows in Arctic sea ice: light transmission and ice algae in a refrozen lead. J. Geophys. Res. Biogeosci. 122, 1486–1505 (2017).

    Article  Google Scholar 

  58. Williamson, C. E. et al. Climate change-induced increases in precipitation are reducing the potential for solar ultraviolet radiation to inactivate pathogens in surface waters. Sci. Rep. 7, 13033 (2017).

    Article  CAS  Google Scholar 

  59. Arnold, M. et al. Global burden of cutaneous melanoma attributable to ultraviolet radiation in 2012. Int. J. Cancer 143, 1305–1314 (2018).

    CAS  Article  Google Scholar 

  60. van Dijk, A. et al. Skin cancer risks avoided by the Montreal Protocol—worldwide modeling integrating coupled climate–chemistry models with a risk model for UV. Photochem. Photobiol. 89, 234–246 (2013).

    Article  CAS  Google Scholar 

  61. Flaxman, S. R. et al. Global causes of blindness and distance vision impairment 1990–2020: a systematic review and meta-analysis. Lancet Glob. Health 5, e1221–e1234 (2017).

    Article  Google Scholar 

  62. Sandhu, P. K. et al. Community-wide interventions to prevent skin cancer: two community guide systematic reviews. Am. J. Prev. Med. 51, 531–539 (2016).

    Article  Google Scholar 

  63. Gordon, L. G. & Rowell, D. Health system costs of skin cancer and cost-effectiveness of skin cancer prevention and screening: a systematic review. Eur. J. Cancer Prev. 24, 141–149 (2015).

    Article  Google Scholar 

  64. Hodzic, A. & Madronich, S. Response of surface ozone over the continental United States to UV radiation. Nat. Clim. Atmos. Sci. 1, 35 (2018).

    Article  CAS  Google Scholar 

  65. Ballaré, C. L., Caldwell, M. M., Flint, S. D., Robinson, S. A. & Bornman, J. F. Effects of solar ultraviolet radiation on terrestrial ecosystems. Patterns, mechanisms, and interactions with climate change. Photochem. Photobiol. Sci. 10, 226–241 (2011).

    Article  CAS  Google Scholar 

  66. Uchytilova, T. et al. Ultraviolet radiation modulates C:N stoichiometry and biomass allocation in Fagus sylvatica saplings cultivated under elevated CO2 concentration. Plant Physiol. Biochem. 134, 103–112 (2018).

    Article  CAS  Google Scholar 

  67. Robson, T. M., Hartikainen, S. M. & Aphalo, P. J. How does solar ultraviolet-B radiation improve drought tolerance of silver birch (Betula pendula Roth.) seedlings? Plant Cell Environ. 38, 953–967 (2015).

    CAS  Article  Google Scholar 

  68. Jenkins, G. I. Photomorphogenic responses to ultraviolet-B light. Plant Cell Environ. 40, 2544–2557 (2017).

    CAS  Article  Google Scholar 

  69. Šuklje, K. et al. Effect of leaf removal and ultraviolet radiation on the composition and sensory perception of Vitis vinifera L. cv. Sauvignon Blanc wine. Aust. J. Grape Wine Res. 20, 223–233 (2014).

    Article  CAS  Google Scholar 

  70. Escobar-Bravo, R., Klinkhamer, P. G. L. & Leiss, K. A. Interactive effects of UV-B light with abiotic factors on plant growth and chemistry, and their consequences for defense against arthropod herbivores. Front. Plant Sci. 8, 278 (2017).

    Article  Google Scholar 

  71. Ballaré, C. L., Mazza, C. A., Austin, A. T. & Pierik, R. Canopy light and plant health. Plant Physiol. 160, 145–155 (2012).

    Article  CAS  Google Scholar 

  72. Wargent, J. J. in The Role of UV-B Radiation in Plant Growth and Development (ed. Jordan, B. R.) 162–176 (CABI, 2017).

  73. Zagarese, H. E. & Williamson, C. E. The implications of solar UV radiation exposure for fish and fisheries. Fish. Fish. 2, 250–260 (2001).

    Article  Google Scholar 

  74. Tucker, A. J. & Williamson, C. E. The invasion window for warmwater fish in clearwater lakes: the role of ultraviolet radiation and temperature. Divers. Distrib. 20, 181–192 (2014).

    Article  Google Scholar 

  75. Neale, P. J. & Thomas, B. C. Inhibition by ultraviolet and photosynthetically available radiation lowers model estimates of depth-integrated picophytoplankton photosynthesis: global predictions for Prochlorococcus and Synechococcus. Glob. Chang. Biol. 23, 293–306 (2017).

    Article  Google Scholar 

  76. Garcia-Corral, L. S. et al. Effects of UVB radiation on net community production in the upper global ocean. Glob. Ecol. Biogeogr. 26, 54–64 (2017).

    Article  Google Scholar 

  77. Cory, R. M., Ward, C. P., Crump, B. C. & Kling, G. W. Sunlight controls water column processing of carbon in arctic fresh waters. Science 345, 925–928 (2014).

    CAS  Article  Google Scholar 

  78. Austin, A. T., Méndez, M. S. & Ballaré, C. L. Photodegradation alleviates the lignin bottleneck for carbon turnover in terrestrial ecosystems. Proc. Natl Acad. Sci. USA 113, 4392–4397 (2016).

    CAS  Article  Google Scholar 

  79. Almagro, M., Maestre, F. T., Martínez-López, J., Valencia, E. & Rey, A. Climate change may reduce litter decomposition while enhancing the contribution of photodegradation in dry perennial Mediterranean grasslands. Soil Biol. Biochem. 90, 214–223 (2015).

    CAS  Article  Google Scholar 

  80. Lindholm, M., Wolf, R., Finstad, A. & Hessen, D. O. Water browning mediates predatory decimation of the Arctic fairy shrimp Branchinecta paludosa. Freshw. Biol. 61, 340–347 (2016).

    Article  Google Scholar 

  81. Cuyckens, G. A. E., Christie, D. A., Domic, A. I., Malizia, L. R. & Renison, D., Climate change. and the distribution and conservation of the world’s highest elevation woodlands in the South American Altiplano. Glob. Planet. Change 137, 79–87 (2016).

    Article  Google Scholar 

  82. Poste, A. E., Braaten, H. F. V., de Wit, H. A., Sørensen, K. & Larssen, T. Effects of photodemethylation on the methylmercury budget of boreal Norwegian lakes. Environ. Toxicol. Chem. 34, 1213–1223 (2015).

    CAS  Article  Google Scholar 

  83. Tsui, M. M. et al. Occurrence, distribution, and fate of organic UV filters in coral communities. Environ. Sci. Technol. 51, 4182–4190 (2017).

    CAS  Article  Google Scholar 

  84. Corinaldesi, C. et al. Sunscreen products impair the early developmental stages of the sea urchin Paracentrotus lividus. Sci. Rep. 7, 7815 (2017).

    Article  CAS  Google Scholar 

  85. Fong, H. C., Ho, J. C., Cheung, A. H., Lai, K. & William, K. Developmental toxicity of the common UV filter, benophenone-2, in zebrafish embryos. Chemosphere 164, 413–420 (2016).

    CAS  Article  Google Scholar 

  86. Willenbrink, T. J., Barker, V. & Diven, D. The effects of sunscreen on marine environments. Cutis 100, 369 (2017).

    Google Scholar 

  87. Clark, J. R. et al. Marine microplastic debris: a targeted plan for understanding and quantifying interactions with marine life. Front. Ecol. Environ. 14, 317–324 (2016).

    Article  Google Scholar 

  88. UNEP Frontiers: 2016 Report. Emerging Issues of Environmental Concern (UNEP, 2016).

  89. Frank, H., Christoph, E. H., Holm-Hansen, O. & Bullister, J. L. Trifluoroacetate in ocean waters. Environ. Sci. Technol. 36, 12–15 (2002).

    CAS  Article  Google Scholar 

  90. Solomon, K. R. et al. Sources, fates, toxicity, and risks of trifluoroacetic acid and its salts: relevance to substances regulated under the Montreal and Kyoto Protocols. J. Toxicol. Environ. Health B 19, 289–304 (2016).

    CAS  Article  Google Scholar 

  91. Fleming, E. L., Jackman, C. H., Stolarski, R. S. & Douglass, A. R. A model study of the impact of source gas changes on the stratosphere for 1850–2100. Atmos. Chem. Phys. 11, 8515–8541 (2011).

    CAS  Article  Google Scholar 

  92. Eyring, V. et al. Long-term ozone changes and associated climate impacts in CMIP5 simulations. J. Geophys. Res. Atm. 118, 5029–5060 (2013).

    CAS  Article  Google Scholar 

  93. Montzka, S. A. et al. An unexpected and persistent increase in global emissions of ozone-depleting CFC-11. Nature 557, 413–417 (2018).

    CAS  Article  Google Scholar 

  94. Crutzen, P. J. Albedo enhancement by stratospheric sulfur injections: a contribution to resolve a policy dilemma? Clim. Change 77, 211–220 (2006).

    CAS  Article  Google Scholar 

  95. Tilmes, S. et al. Impact of very short-lived halogens on stratospheric ozone abundance and UV radiation in a geo-engineered atmosphere. Atmos. Chem. Phys. 12, 10945–10955 (2012).

    CAS  Article  Google Scholar 

  96. Nowack, P. J., Abraham, N. L., Braesicke, P. & Pyle, J. A. Stratospheric ozone changes under solar geoengineering: implications for UV exposure and air quality. Atmos. Chem. Phys. 16, 4191–4203 (2016).

    CAS  Article  Google Scholar 

  97. Madronich, S., Tilmes, S., Kravitz, B., MacMartin, D. & Richter, J. Response of surface ultraviolet and visible radiation to stratospheric SO2 injections. Atmosphere 9, 432 (2018).

    Article  Google Scholar 

  98. Kayler, Z. E. et al. Experiments to confront the environmental extremes of climate change. Front. Ecol. Environ. 13, 219–225 (2015).

    Article  Google Scholar 

  99. Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).

    Article  CAS  Google Scholar 

  100. Millenium Ecosystem Assessment. Ecosystems and Human Well-being: Our Human Planet; Summary for Decision-makers, Vol. 5 (Island, 2005).

  101. NASA Institute for Space Studies. GISS Surface Temperature Analysis (GISTEMP) (GISTEMP, accessed 24 July 2018); https://data.giss.nasa.gov/gistemp/

  102. Hansen, J., Ruedy, R., Sato, M. & Lo, K. Global surface temperature change. Rev. Geophys. 48, RG4004 (2010).

    Article  Google Scholar 

  103. https://earthobservatory.nasa.gov/images/817/largest-ever-ozone-hole-over-antarctica (accessed 14 May 2019).

  104. https://ozonewatch.gsfc.nasa.gov/ (accessed 14 May 2019).

Download references

Acknowledgements

This work has been supported by the UNEP Ozone Secretariat, and we thank T. Birmpili and S. Mylona for their guidance and assistance. Additional support was provided by the US Global Change Research Program (P.W.B., C.E.W. and S.M.), the J. H. Mullahy Endowment for Environmental Biology (P.W.B.), the US National Science Foundation (grants DEB 1360066 and DEB 1754276 to C.E.W.), the Australian Research Council (DP180100113 to S.A.R.) and the University of Wollongong’s Global Challenges Program (S.A.R.). We appreciate the contributions from other UNEP EEAP members and co-authors of the EEAP Quadrennial Report, including: M. Ilyas, Y. Takizawa, F. L. Figueroa, H. H. Redhwi and A. Torikai. Special thanks to A. Netherwood for his assistance in drafting and improving figures. This paper has been reviewed in accordance with the US Environmental Protection Agency’s (US EPA) peer and administrative review policies and approved for publication. Mention of trade names or commercial products does not constitute an endorsement or recommendation for use by the US EPA.

Author information

Authors and Affiliations

Authors

Contributions

All authors helped in the development and review of this paper. The lead authors P.W.B., C.E.W., R.M.L., S.A.R., S.M. and N.D.P. played major roles in conceptualizing and writing the document. P.W.B. organized and coordinated the paper and integrated comments and revisions on all the drafts. C.E.W., R.M.L., J.F.B., A.F.B., B.S., S.R.W. and A.L.A. provided content with the assistance of S.M., S.A.R., G.H.B., R.L.M., P.J.A., A.M.H., P.J.Y. (stratospheric ozone effects on UV and ozone-driven climate change), R.E.N., F.R.deG., M.N., L.E.R., C.A.S., S.Y., A.R.Y. (human health), P.W.B., S.A.R., C.L.B., S.D.F., M.A.K.J., T.M.R. (agriculture and terrestrial ecosystems), P.J.N., S.H., K.C.R., R.M.C., D.-P.H., S-Å.W., R.C.W. (fisheries and aquatic ecosystems), A.T.A., R.G.Z. (biogeochemistry and contaminants), K.R.S., J.L. (air quality and toxicology) and K.K.P. (materials). R.L.M. conducted the UV simulation modelling.

Corresponding author

Correspondence to Paul W. Barnes.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Barnes, P.W., Williamson, C.E., Lucas, R.M. et al. Ozone depletion, ultraviolet radiation, climate change and prospects for a sustainable future. Nat Sustain 2, 569–579 (2019). https://doi.org/10.1038/s41893-019-0314-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41893-019-0314-2

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing