Review Article | Published:

Ozone depletion, ultraviolet radiation, climate change and prospects for a sustainable future


Changes in stratospheric ozone and climate over the past 40-plus years have altered the solar ultraviolet (UV) radiation conditions at the Earth’s surface. Ozone depletion has also contributed to climate change across the Southern Hemisphere. These changes are interacting in complex ways to affect human health, food and water security, and ecosystem services. Many adverse effects of high UV exposure have been avoided thanks to the Montreal Protocol with its Amendments and Adjustments, which have effectively controlled the production and use of ozone-depleting substances. This international treaty has also played an important role in mitigating climate change. Climate change is modifying UV exposure and affecting how people and ecosystems respond to UV; these effects will become more pronounced in the future. The interactions between stratospheric ozone, climate and UV radiation will therefore shift over time; however, the Montreal Protocol will continue to have far-reaching benefits for human well-being and environmental sustainability.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1.

    Crutzen, P. J. The influence of nitrogen oxides on the atmospheric ozone content. Q. J. Royal Meteorol. Soc. 96, 320–325 (1970).

  2. 2.

    Molina, M. J. & Rowland, F. S. Stratospheric sink for chlorofluoromethanes: chlorine atomic-catalysed destruction of ozone. Nature 249, 810–812 (1974).

  3. 3.

    Farman, J. C., Gardiner, B. G. & Shanklin, J. D. Large losses of ozone in Antarctica reveal seasonal ClOx/NOx interaction. Nature 315, 207–210 (1985).

  4. 4.

    Watson, R. T., Prather, M. J. & Kurylo, M. J. Present State of Knowledge of the Upper Atmosphere 1988: An Assessment Report. NASA Reference Publication 1208 (NASA Office of Space Science and Applications, 1988).

  5. 5.

    Synthesis Report: Integration of the Four Assessment Panels Reports by the Open-Ended Working Group of the Parties to the Montreal Protocol (OEWG, 1989).

  6. 6.

    Solomon, S., Garcia, R. R., Rowland, F. S. & Wuebbles, D. J. On the depletion of Antarctic ozone. Nature 321, 755–758 (1986).

  7. 7.

    Solomon, S. Progress towards a quantitative understanding of Antarctic ozone depletion. Nature 347, 347–354 (1990).

  8. 8.

    Andersen, S. O. & Sarma, K. M. Protecting the Ozone Layer: The United Nations History (Earthscan, 2012).

  9. 9.

    Newman, P. A. et al. What would have happened to the ozone layer if chlorofluorocarbons (CFCs) had not been regulated? Atmos. Chem. Phys. 9, 2113–2128 (2009).

  10. 10.

    Mäder, J. A. et al. Evidence for the effectiveness of the Montreal Protocol to protect the ozone layer. Atmos. Chem. Phys. 10, 12161–12171 (2010).

  11. 11.

    Newman, P. A. & McKenzie, R. UV impacts avoided by the Montreal Protocol. Photochem. Photobiol. Sci. 10, 1152–1160 (2011).

  12. 12.

    Scientific Assessment of Ozone Depletion: 2018, Global Ozone Research and Monitoring Project. Report no. 58.88 (WMO, 2018).

  13. 13.

    Updating Ozone Calculations and Emissions Profiles for Use in the Atmospheric and Health Effects Framework Model (USEPA, 2015).

  14. 14.

    Myhre, G. et al. in IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 661–740 (Cambridge Univ. Press, 2013).

  15. 15.

    Garcia, R. R., Kinnison, D. E. & Marsh, D. R. ‘World Avoided’ simulations with the Whole Atmosphere Community Climate Model. J. Geophys. Res. Atm. 117, D23303 (2012).

  16. 16.

    Ripley, K. & Verkuijl, C. ‘Ozone family’ delivers landmark deal for the climate. Environ. Policy Law 46, 371 (2016).

  17. 17.

    Xu, Y., Zaelke, D., Velders, G. J. M. & Ramanathan, V. The role of HFCs in mitigating 21st century climate change. Atmos. Chem. Phys. 13, 6083–6089 (2013).

  18. 18.

    Chipperfield, M. P. et al. Quantifying the ozone and ultraviolet benefits already achieved by the Montreal Protocol. Nat. Commun. 6, 7233 (2015).

  19. 19.

    Velders, G. J., Andersen, S. O., Daniel, J. S., Fahey, D. W. & McFarland, M. The importance of the Montreal Protocol in protecting climate. Proc. Natl Acad.Sci. USA 104, 4814–4819 (2007).

  20. 20.

    Papanastasiou, D. K., Beltrone, A., Marshall, P. & Burkholder, J. B. Global warming potential estimates for the C1–C3 hydrochlorofluorocarbons (HCFCs) included in the Kigali Amendment to the Montreal Protocol. Atmos. Chem. Phys. 18, 6317–6330 (2018).

  21. 21.

    IPCC: Summary for Policymakers. In Global Warming of 1.5 °C. IPCC Special Report (IPCC, 2018).

  22. 22.

    Andrady, A. L., Pandey, K. K. & Heikkilä, A. M. Interactive effects of solar UV radiation and climate change on material damage. Photochem. Photobiol. Sci. 18, 804–825 (2019).

  23. 23.

    Lucas, R. M. et al. Human health in relation to exposure to solar ultraviolet radiation under changing stratospheric ozone and climate. Photochem. Photobiol. Sci. 18, 641–680 (2019).

  24. 24.

    Bornman, J. F. et al. Linkages between stratospheric ozone, UV radiation and climate change and their implications for terrestrial ecosystems. Photochem. Photobiol. Sci. 18, 681–716 (2019).

  25. 25.

    Williamson, C. E. et al. The interactive effects of stratospheric ozone depletion, UV radiation, and climate change on aquatic ecosystems. Photochem. Photobiol. Sci. 18, 717–746 (2019).

  26. 26.

    Sulzberger, B., Austin, A. T., Cory, R. M., Zepp, R. G. & Paul, N. D. Solar UV radiation in a changing world: roles of cryosphere–land–water–atmosphere interfaces in global biogeochemical cycles. Photochem. Photobiol. Sci. 18, 747–774 (2019).

  27. 27.

    Bais, A. F. et al. Ozone–climate interactions and effects on solar ultraviolet radiation. Photochem. Photobiol. Sci. 18, 602–640 (2019).

  28. 28.

    Wilson, S. R., Madronich, S., Longstreth, J. D. & Solomon, K. R. Interactive effects of changing stratospheric ozone and climate on composition of the troposphere, air quality, and consequences for human and ecosystem health. Photochem. Photobiol. Sci. 18, 775–803 (2019).

  29. 29.

    IPCC Climate Change 2014: Synthesis Report (eds Core Writing Team, Pachauri, R. K. & Meyer L. A.) (IPCC, 2014).

  30. 30.

    Arblaster, J. et al. In Scientific Assessment of Ozone Depletion: 2014. Global Ozone Research and Monitoring Project Report No. 55, Ch. 4 (WMO, 2014).

  31. 31.

    Langematz, U. et al. In Scientific Assessment of Ozone Depletion: 2018. Global Ozone Research and Monitoring Project Report No. 58, Ch. 4 (WMO, 2018).

  32. 32.

    Clem, K. R., Renwick, J. A. & McGregor, J. Relationship between eastern tropical Pacific cooling and recent trends in the Southern Hemisphere zonal-mean circulation. Clim. Dyn. 49, 113–129 (2017).

  33. 33.

    Lim, E. P. et al. The impact of the Southern Annular Mode on future changes in Southern Hemisphere rainfall. Geophys. Res. Lett. 43, 7160–7167 (2016).

  34. 34.

    Holz, A. et al. Southern Annular Mode drives multicentury wildfire activity in southern South America. Proc. Natl Acad. Sci. USA 114, 9552–9557 (2017).

  35. 35.

    Kostov, Y. et al. Fast and slow responses of Southern Ocean sea surface temperature to SAM in coupled climate models. Clim. Dyn. 48, 1595–1609 (2017).

  36. 36.

    Oliveira, F. N. M. & Ambrizzi, T. The effects of ENSO-types and SAM on the large-scale southern blockings. Int. J. Climatol. 37, 3067–3081 (2017).

  37. 37.

    Robinson, S. A. et al. Rapid change in East Antarctic terrestrial vegetation in response to regional drying. Nat. Clim. Change 8, 879–884 (2018).

  38. 38.

    Robinson, S. A. & Erickson, D. J. III Not just about sunburn—the ozone hole’s profound effect on climate has significant implications for Southern Hemisphere ecosystems. Glob. Change Biol. 21, 515–527 (2015).

  39. 39.

    Morgenstern, O. et al. Review of the global models used within phase 1 of the Chemistry–Climate Model Initiative (CCMI). Geosci. Model Dev. 10, 639–671 (2017).

  40. 40.

    Williamson, C. E. et al. Solar ultraviolet radiation in a changing climate. Nat. Clim. Change 4, 434–441 (2014).

  41. 41.

    IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

  42. 42.

    López, M. L., Palancar, G. G. & Toselli, B. M. Effects of stratocumulus, cumulus, and cirrus clouds on the UV-B diffuse to global ratio: experimental and modeling results. J. Quant. Spectrosc. Radiat. Transf. 113, 461–469 (2012).

  43. 43.

    Feister, U., Cabrol, N. & Häder, D. UV irradiance enhancements by scattering of solar radiation from clouds. Atmosphere 6, 1211–1228 (2015).

  44. 44.

    Williamson, C. E. et al. Sentinel responses to droughts, wildfires, and floods: effects of UV radiation on lakes and their ecosystem services. Front. Ecol. Environ. 14, 102–109 (2016).

  45. 45.

    Gies, P., Roy, C., Toomey, S. & Tomlinson, D. Ambient solar UVR, personal exposure and protection. J. Epidemiol. 9, S115–S122 (1999).

  46. 46.

    Xiang, F. et al. Weekend personal ultraviolet radiation exposure in four cities in Australia: influence of temperature, humidity and ambient ultraviolet radiation. J. Photochem. Photobiol. B 143, 74–81 (2015).

  47. 47.

    Cuthill, I. C. et al. The biology of color. Science 357, eaan0221 (2017).

  48. 48.

    Mazza, C. A., Izaguirre, M. M., Curiale, J. & Ballaré, C. L. A look into the invisible. Ultraviolet-B sensitivity in an insect (Caliothrips phaseoli) revealed through a behavioural action spectrum. Proc. R. Soc. B 277, 367–373 (2010).

  49. 49.

    IPCC Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Field, C. B. et al.) (Cambridge Univ. Press, 2014).

  50. 50.

    Steinbauer, M. J. et al. Accelerated increase in plant species richness on mountain summits is linked to warming. Nature 556, 231–234 (2018).

  51. 51.

    Urmy, S. S. et al. Vertical redistribution of zooplankton in an oligotrophic lake associated with reduction in ultraviolet radiation by wildfire smoke. Geophys. Res. Lett. 43, 3746–3753 (2016).

  52. 52.

    Ma, Z., Li, W., Shen, A. & Gao, K. Behavioral responses of zooplankton to solar radiation changes: in situ evidence. Hydrobiologia 711, 155–163 (2013).

  53. 53.

    Leach, T. H., Williamson, C. E., Theodore, N., Fischer, J. M. & Olson, M. H. The role of ultraviolet radiation in the diel vertical migration of zooplankton: an experimental test of the transparency-regulator hypothesis. J. Plankton Res. 37, 886–896 (2015).

  54. 54.

    Fischer, J. M. et al. Diel vertical migration of copepods in mountain lakes: the changing role of ultraviolet radiation across a transparency gradient. Limnol. Oceanogr. 60, 252–262 (2015).

  55. 55.

    Cohen, J. M., Lajeunesse, M. J. & Rohr, J. R. A global synthesis of animal phenological responses to climate change. Nat. Clim. Change 8, 224–228 (2018).

  56. 56.

    Predick, K. I. et al. UV-B radiation and shrub canopy effects on surface litter decomposition in a shrub-invaded dry grassland. J. Arid Environ. 157, 13–21 (2018).

  57. 57.

    Kauko, H. M. et al. Windows in Arctic sea ice: light transmission and ice algae in a refrozen lead. J. Geophys. Res. Biogeosci. 122, 1486–1505 (2017).

  58. 58.

    Williamson, C. E. et al. Climate change-induced increases in precipitation are reducing the potential for solar ultraviolet radiation to inactivate pathogens in surface waters. Sci. Rep. 7, 13033 (2017).

  59. 59.

    Arnold, M. et al. Global burden of cutaneous melanoma attributable to ultraviolet radiation in 2012. Int. J. Cancer 143, 1305–1314 (2018).

  60. 60.

    van Dijk, A. et al. Skin cancer risks avoided by the Montreal Protocol—worldwide modeling integrating coupled climate–chemistry models with a risk model for UV. Photochem. Photobiol. 89, 234–246 (2013).

  61. 61.

    Flaxman, S. R. et al. Global causes of blindness and distance vision impairment 1990–2020: a systematic review and meta-analysis. Lancet Glob. Health 5, e1221–e1234 (2017).

  62. 62.

    Sandhu, P. K. et al. Community-wide interventions to prevent skin cancer: two community guide systematic reviews. Am. J. Prev. Med. 51, 531–539 (2016).

  63. 63.

    Gordon, L. G. & Rowell, D. Health system costs of skin cancer and cost-effectiveness of skin cancer prevention and screening: a systematic review. Eur. J. Cancer Prev. 24, 141–149 (2015).

  64. 64.

    Hodzic, A. & Madronich, S. Response of surface ozone over the continental United States to UV radiation. Nat. Clim. Atmos. Sci. 1, 35 (2018).

  65. 65.

    Ballaré, C. L., Caldwell, M. M., Flint, S. D., Robinson, S. A. & Bornman, J. F. Effects of solar ultraviolet radiation on terrestrial ecosystems. Patterns, mechanisms, and interactions with climate change. Photochem. Photobiol. Sci. 10, 226–241 (2011).

  66. 66.

    Uchytilova, T. et al. Ultraviolet radiation modulates C:N stoichiometry and biomass allocation in Fagus sylvatica saplings cultivated under elevated CO2 concentration. Plant Physiol. Biochem. 134, 103–112 (2018).

  67. 67.

    Robson, T. M., Hartikainen, S. M. & Aphalo, P. J. How does solar ultraviolet-B radiation improve drought tolerance of silver birch (Betula pendula Roth.) seedlings? Plant Cell Environ. 38, 953–967 (2015).

  68. 68.

    Jenkins, G. I. Photomorphogenic responses to ultraviolet-B light. Plant Cell Environ. 40, 2544–2557 (2017).

  69. 69.

    Šuklje, K. et al. Effect of leaf removal and ultraviolet radiation on the composition and sensory perception of Vitis vinifera L. cv. Sauvignon Blanc wine. Aust. J. Grape Wine Res. 20, 223–233 (2014).

  70. 70.

    Escobar-Bravo, R., Klinkhamer, P. G. L. & Leiss, K. A. Interactive effects of UV-B light with abiotic factors on plant growth and chemistry, and their consequences for defense against arthropod herbivores. Front. Plant Sci. 8, 278 (2017).

  71. 71.

    Ballaré, C. L., Mazza, C. A., Austin, A. T. & Pierik, R. Canopy light and plant health. Plant Physiol. 160, 145–155 (2012).

  72. 72.

    Wargent, J. J. in The Role of UV-B Radiation in Plant Growth and Development (ed. Jordan, B. R.) 162–176 (CABI, 2017).

  73. 73.

    Zagarese, H. E. & Williamson, C. E. The implications of solar UV radiation exposure for fish and fisheries. Fish. Fish. 2, 250–260 (2001).

  74. 74.

    Tucker, A. J. & Williamson, C. E. The invasion window for warmwater fish in clearwater lakes: the role of ultraviolet radiation and temperature. Divers. Distrib. 20, 181–192 (2014).

  75. 75.

    Neale, P. J. & Thomas, B. C. Inhibition by ultraviolet and photosynthetically available radiation lowers model estimates of depth-integrated picophytoplankton photosynthesis: global predictions for Prochlorococcus and Synechococcus. Glob. Chang. Biol. 23, 293–306 (2017).

  76. 76.

    Garcia-Corral, L. S. et al. Effects of UVB radiation on net community production in the upper global ocean. Glob. Ecol. Biogeogr. 26, 54–64 (2017).

  77. 77.

    Cory, R. M., Ward, C. P., Crump, B. C. & Kling, G. W. Sunlight controls water column processing of carbon in arctic fresh waters. Science 345, 925–928 (2014).

  78. 78.

    Austin, A. T., Méndez, M. S. & Ballaré, C. L. Photodegradation alleviates the lignin bottleneck for carbon turnover in terrestrial ecosystems. Proc. Natl Acad. Sci. USA 113, 4392–4397 (2016).

  79. 79.

    Almagro, M., Maestre, F. T., Martínez-López, J., Valencia, E. & Rey, A. Climate change may reduce litter decomposition while enhancing the contribution of photodegradation in dry perennial Mediterranean grasslands. Soil Biol. Biochem. 90, 214–223 (2015).

  80. 80.

    Lindholm, M., Wolf, R., Finstad, A. & Hessen, D. O. Water browning mediates predatory decimation of the Arctic fairy shrimp Branchinecta paludosa. Freshw. Biol. 61, 340–347 (2016).

  81. 81.

    Cuyckens, G. A. E., Christie, D. A., Domic, A. I., Malizia, L. R. & Renison, D., Climate change. and the distribution and conservation of the world’s highest elevation woodlands in the South American Altiplano. Glob. Planet. Change 137, 79–87 (2016).

  82. 82.

    Poste, A. E., Braaten, H. F. V., de Wit, H. A., Sørensen, K. & Larssen, T. Effects of photodemethylation on the methylmercury budget of boreal Norwegian lakes. Environ. Toxicol. Chem. 34, 1213–1223 (2015).

  83. 83.

    Tsui, M. M. et al. Occurrence, distribution, and fate of organic UV filters in coral communities. Environ. Sci. Technol. 51, 4182–4190 (2017).

  84. 84.

    Corinaldesi, C. et al. Sunscreen products impair the early developmental stages of the sea urchin Paracentrotus lividus. Sci. Rep. 7, 7815 (2017).

  85. 85.

    Fong, H. C., Ho, J. C., Cheung, A. H., Lai, K. & William, K. Developmental toxicity of the common UV filter, benophenone-2, in zebrafish embryos. Chemosphere 164, 413–420 (2016).

  86. 86.

    Willenbrink, T. J., Barker, V. & Diven, D. The effects of sunscreen on marine environments. Cutis 100, 369 (2017).

  87. 87.

    Clark, J. R. et al. Marine microplastic debris: a targeted plan for understanding and quantifying interactions with marine life. Front. Ecol. Environ. 14, 317–324 (2016).

  88. 88.

    UNEP Frontiers: 2016 Report. Emerging Issues of Environmental Concern (UNEP, 2016).

  89. 89.

    Frank, H., Christoph, E. H., Holm-Hansen, O. & Bullister, J. L. Trifluoroacetate in ocean waters. Environ. Sci. Technol. 36, 12–15 (2002).

  90. 90.

    Solomon, K. R. et al. Sources, fates, toxicity, and risks of trifluoroacetic acid and its salts: relevance to substances regulated under the Montreal and Kyoto Protocols. J. Toxicol. Environ. Health B 19, 289–304 (2016).

  91. 91.

    Fleming, E. L., Jackman, C. H., Stolarski, R. S. & Douglass, A. R. A model study of the impact of source gas changes on the stratosphere for 1850–2100. Atmos. Chem. Phys. 11, 8515–8541 (2011).

  92. 92.

    Eyring, V. et al. Long-term ozone changes and associated climate impacts in CMIP5 simulations. J. Geophys. Res. Atm. 118, 5029–5060 (2013).

  93. 93.

    Montzka, S. A. et al. An unexpected and persistent increase in global emissions of ozone-depleting CFC-11. Nature 557, 413–417 (2018).

  94. 94.

    Crutzen, P. J. Albedo enhancement by stratospheric sulfur injections: a contribution to resolve a policy dilemma? Clim. Change 77, 211–220 (2006).

  95. 95.

    Tilmes, S. et al. Impact of very short-lived halogens on stratospheric ozone abundance and UV radiation in a geo-engineered atmosphere. Atmos. Chem. Phys. 12, 10945–10955 (2012).

  96. 96.

    Nowack, P. J., Abraham, N. L., Braesicke, P. & Pyle, J. A. Stratospheric ozone changes under solar geoengineering: implications for UV exposure and air quality. Atmos. Chem. Phys. 16, 4191–4203 (2016).

  97. 97.

    Madronich, S., Tilmes, S., Kravitz, B., MacMartin, D. & Richter, J. Response of surface ultraviolet and visible radiation to stratospheric SO2 injections. Atmosphere 9, 432 (2018).

  98. 98.

    Kayler, Z. E. et al. Experiments to confront the environmental extremes of climate change. Front. Ecol. Environ. 13, 219–225 (2015).

  99. 99.

    Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).

  100. 100.

    Millenium Ecosystem Assessment. Ecosystems and Human Well-being: Our Human Planet; Summary for Decision-makers, Vol. 5 (Island, 2005).

  101. 101.

    NASA Institute for Space Studies. GISS Surface Temperature Analysis (GISTEMP) (GISTEMP, accessed 24 July 2018);

  102. 102.

    Hansen, J., Ruedy, R., Sato, M. & Lo, K. Global surface temperature change. Rev. Geophys. 48, RG4004 (2010).

  103. 103. (accessed 14 May 2019).

  104. 104. (accessed 14 May 2019).

Download references


This work has been supported by the UNEP Ozone Secretariat, and we thank T. Birmpili and S. Mylona for their guidance and assistance. Additional support was provided by the US Global Change Research Program (P.W.B., C.E.W. and S.M.), the J. H. Mullahy Endowment for Environmental Biology (P.W.B.), the US National Science Foundation (grants DEB 1360066 and DEB 1754276 to C.E.W.), the Australian Research Council (DP180100113 to S.A.R.) and the University of Wollongong’s Global Challenges Program (S.A.R.). We appreciate the contributions from other UNEP EEAP members and co-authors of the EEAP Quadrennial Report, including: M. Ilyas, Y. Takizawa, F. L. Figueroa, H. H. Redhwi and A. Torikai. Special thanks to A. Netherwood for his assistance in drafting and improving figures. This paper has been reviewed in accordance with the US Environmental Protection Agency’s (US EPA) peer and administrative review policies and approved for publication. Mention of trade names or commercial products does not constitute an endorsement or recommendation for use by the US EPA.

Author information

All authors helped in the development and review of this paper. The lead authors P.W.B., C.E.W., R.M.L., S.A.R., S.M. and N.D.P. played major roles in conceptualizing and writing the document. P.W.B. organized and coordinated the paper and integrated comments and revisions on all the drafts. C.E.W., R.M.L., J.F.B., A.F.B., B.S., S.R.W. and A.L.A. provided content with the assistance of S.M., S.A.R., G.H.B., R.L.M., P.J.A., A.M.H., P.J.Y. (stratospheric ozone effects on UV and ozone-driven climate change), R.E.N., F.R.deG., M.N., L.E.R., C.A.S., S.Y., A.R.Y. (human health), P.W.B., S.A.R., C.L.B., S.D.F., M.A.K.J., T.M.R. (agriculture and terrestrial ecosystems), P.J.N., S.H., K.C.R., R.M.C., D.-P.H., S-Å.W., R.C.W. (fisheries and aquatic ecosystems), A.T.A., R.G.Z. (biogeochemistry and contaminants), K.R.S., J.L. (air quality and toxicology) and K.K.P. (materials). R.L.M. conducted the UV simulation modelling.

Correspondence to Paul W. Barnes.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark
Fig. 1: The Sustainable Development Goals (SDGs) addressed by the UNEP Environmental Effects Assessment Panel 2018 Quadrennial Report.
Fig. 2: Links between stratospheric ozone depletion, UV radiation and climate change.