Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Techno–ecological synergies of solar energy for global sustainability

Abstract

The strategic engineering of solar energy technologies—from individual rooftop modules to large solar energy power plants—can confer significant synergistic outcomes across industrial and ecological boundaries. Here, we propose techno–ecological synergy (TES), a framework for engineering mutually beneficial relationships between technological and ecological systems, as an approach to augment the sustainability of solar energy across a diverse suite of recipient environments, including land, food, water, and built-up systems. We provide a conceptual model and framework to describe 16 TESs of solar energy and characterize 20 potential techno–ecological synergistic outcomes of their use. For each solar energy TES, we also introduce metrics and illustrative assessments to demonstrate techno–ecological potential across multiple dimensions. The numerous applications of TES to solar energy technologies are unique among energy systems and represent a powerful frontier in sustainable engineering to minimize unintended consequences on nature associated with a rapid energy transition.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Conceptual model demonstrating how TESs of solar energy produce mutually beneficial technological and ecological synergistic outcomes that serve to mitigate global change-type challenges.
Fig. 2: Framework for TESs of solar energy development.
Fig. 3: Techno–ecological synergies of solar energy and examples of techno–ecological synergistic outcomes.

Dennis Schroeder, NREL (a left, d right); © 2018 Google (c); Greg Allen, Far Niente Winery (d left)

References

  1. 1.

    Bakshi, B. R., Ziv, G. & Lepech, M. D. Techno–ecological synergy: A framework for sustainable engineering. Environ. Sci. Technol. 49, 1752–1760 (2015).

    CAS  Article  Google Scholar 

  2. 2.

    Moore-O’Leary, K. A. et al. Sustainability of utility-scale solar energy – critical ecological concepts. Front. Ecol. Environ. 15, 385–394 (2017).

    Article  Google Scholar 

  3. 3.

    Liu, J. et al. Systems integration for global sustainability. Science 347, 1258832 (2015).

    Article  Google Scholar 

  4. 4.

    Wackernagel, M. et al. Tracking the ecological overshoot of the human economy. Proc. Natl Acad. Sci. USA 99, 9266–9271 (2002).

    CAS  Article  Google Scholar 

  5. 5.

    Trainor, A. M., McDonald, R. I. & Fargione, J. Energy sprawl is the largest driver of land use change in United States. PLoS ONE 11, e0162269 (2016).

    Article  Google Scholar 

  6. 6.

    Hoffacker, M. K., Allen, M. F. & Hernandez, R. R. Land-sparing opportunities for solar energy development in agricultural landscapes: A case study of the Great Central Valley, CA, United States. Environ. Sci. Technol. 51, 14472–14482 (2017).

    CAS  Article  Google Scholar 

  7. 7.

    Griggs, D. et al. Policy: Sustainable development goals for people and planet. Nature 495, 305–307 (2013).

    CAS  Article  Google Scholar 

  8. 8.

    Carroll, A. B. & Shabana, K. M. The business case for corporate social responsibility: a review of concepts, research and practice. Int. J. Manag. Rev. 12, 85–105 (2010).

    Article  Google Scholar 

  9. 9.

    Burkhardt, J. J., Heath, G. & Cohen, E. Life cycle greenhouse gas emissions of trough and tower concentrating solar power electricity generation. J. Ind. Ecol. 16, S93–S109 (2012).

    CAS  Article  Google Scholar 

  10. 10.

    Hsu, D. D. et al. Life cycle greenhouse gas emissions of crystalline silicon photovoltaic electricity generation: systematic review and harmonization. J. Ind. Ecol. 16, S122–S135 (2012).

    CAS  Article  Google Scholar 

  11. 11.

    Heath, G. A., O’Donoughue, P., Arent, D. J. & Bazilian, M. Harmonization of initial estimates of shale gas life cycle greenhouse gas emissions for electric power generation. Proc. Natl Acad. Sci. USA 111, E3167–E3176 (2014).

    CAS  Article  Google Scholar 

  12. 12.

    O’Donoughue, P. R., Heath, G. A., Dolan, S. L. & Vorum, M. Life cycle greenhouse gas emissions of electricity generated from conventionally produced natural gas: systematic review and harmonization. J. Ind. Ecol. 18, 125–144 (2014).

    Article  Google Scholar 

  13. 13.

    Whitaker, M., Heath, G. A., O’Donoughue, P. & Vorum, M. Life cycle greenhouse gas emissions of coal-fired electricity generation. J. Ind. Ecol. 16, S53–S72 (2012).

    CAS  Article  Google Scholar 

  14. 14.

    Edenhofer, O. et al. Renewable energy sources and climate change mitigation: Special report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2011).

  15. 15.

    Cash, D. W. et al. Knowledge systems for sustainable development. Proc. Natl Acad. Sci. USA 100, 8086–8091 (2003).

    CAS  Article  Google Scholar 

  16. 16.

    McCullough, E. B. & Matson, P. A. Evolution of the knowledge system for agricultural development in the Yaqui Valley, Sonora, Mexico. Proc. Natl Acad. Sci. USA 113, 4609–4614 (2016).

    CAS  Article  Google Scholar 

  17. 17.

    Urban, F. E., Goldstein, H. L., Fulton, R. & Reynolds, R. L. Unseen dust emission and global dust abundance: documenting dust emission from the Mojave Desert (USA) by daily remote camera imagery and wind-erosion measurements. J. Geophys. Res. Atmos. 123, 8735–8753 (2018).

    Article  Google Scholar 

  18. 18.

    Roberts, B. Potential for Photovoltaic Solar Installation in Non-Irrigated Corners of Center Pivot Irrigation Fields in the State of Colorado (National Renewable Energy Laboratory, 2011).

  19. 19.

    Macknick, J., Beatty, B. & Hill, G. Overview of Opportunities for Co-Location of Solar Energy Technologies and Vegetation (National Renewable Energy Laboratory, 2013).

  20. 20.

    Hernandez, R. R. et al. Environmental impacts of utility-scale solar energy. Renew. Sustain. Energy Rev. 29, 766–779 (2014).

    Article  Google Scholar 

  21. 21.

    Sarukhán, J. & Whyte, A. (eds) Ecosystems and human well-being: synthesis (Millennium Ecosystem Assessment, 2005).

  22. 22.

    Ring, I., Hansjürgens, B., Elmqvist, T., Wittmer, H. & Sukhdev, P. Challenges in framing the economics of ecosystems and biodiversity: the TEEB initiative. Curr. Opin. Environ. Sustain. 2, 15–26 (2010).

    Article  Google Scholar 

  23. 23.

    Lambin, E. F. & Meyfroidt, P. Global land use change, economic globalization, and the looming land scarcity. Proc. Natl Acad. Sci. USA 108, 3465–7342 (2011).

    CAS  Article  Google Scholar 

  24. 24.

    Milbrandt, A. R., Heimiller, D. M., Perry, A. D. & Field, C. B. Renewable energy potential on marginal lands in the United States. Renew. Sustain. Energy Rev. 29, 473–481 (2014).

    Article  Google Scholar 

  25. 25.

    Urban, F. E., Reynolds, R. L. & Fulton, R. in Arid Environments and Wind Erosion (eds Fernandez-Barnal, A. & De La Rosa, M. A.) Ch. 11 (Nova Science Publishers, Inc, 2009).

  26. 26.

    Cooksey, G. L. S. et al. Dust exposure and coccidioidomycosis prevention among solar power farm construction workers in California. Am. J. Public Health 107, 1296–1303 (2017).

    Article  Google Scholar 

  27. 27.

    Hernandez, R. R., Hoffacker, M. K. & Field, C. B. Land-use efficiency of big solar. Environ. Sci. Technol. 48, 1315–1323 (2014).

    CAS  Article  Google Scholar 

  28. 28.

    Indragandhi, V., Subramaniyaswamy, V. & Logesh, R. Resources, configurations, and soft computing techniques for power management and control of PV/wind hybrid system. Renew. Sustain. Energy Rev. 69, 129–143 (2017).

    Article  Google Scholar 

  29. 29.

    De Marco, A. et al. The contribution of utility-scale solar energy to the global climate regulation and its effects on local ecosystem services. Glob. Ecol. Conserv. 2, 324–337 (2014).

    Article  Google Scholar 

  30. 30.

    Kenward, R. E. et al. Identifying governance strategies that effectively support ecosystem services, resource sustainability, and biodiversity. Proc. Natl Acad. Sci. USA 108, 5308–5312 (2011).

    CAS  Article  Google Scholar 

  31. 31.

    Montag, H., Parker, G. & Clarkson, T. The Effects of Solar Farms on Local Biodiversity: A Comparative Study (Clarkson and Woods and Wychwood Biodiversity, 2016).

  32. 32.

    Walston, L. J. et al. Examining the potential for agricultural benefits from pollinator habitat at solar facilities in the United States. Environ. Sci. Technol. 52, 7566–7576 (2018).

    CAS  Article  Google Scholar 

  33. 33.

    Shashua-Bar, L., Hoffman, M. E. & Tzamir, Y. Integrated thermal effects of generic built forms and vegetation on the UCL microclimate. Build. Environ. 41, 343–354 (2006).

    Article  Google Scholar 

  34. 34.

    García, F. C., Bestion, E., Warfield, R. & Yvon-Durocher, G. Changes in temperature alter the relationship between biodiversity and ecosystem functioning. Proc. Natl Acad. Sci. USA 115, 10989–10994 (2018).

    Article  Google Scholar 

  35. 35.

    Parker, S. S., Cohen, B. S. & Moore, J. Impact of solar and wind development on conservation values in the Mojave Desert. PLoS ONE 13, e0207678 (2018).

    Article  Google Scholar 

  36. 36.

    Hernandez, R. R., Hoffacker, M. K., Murphy-Mariscal, M. L., Wu, G. & Allen, M. F. Solar energy development impacts on land-cover change. Proc. Natl Acad. Sci. USA 112, 13579–13584 (2015).

    CAS  Article  Google Scholar 

  37. 37.

    Mulvaney, D. Identifying the roots of Green Civil War over utility-scale solar energy projects on public lands across the American Southwest. J. Land Use Sci. 12, 493–515 (2017).

    Article  Google Scholar 

  38. 38.

    Dupraz, C. et al. Combining solar photovoltaic panels and food crops for optimising land use: towards new agrivoltaic schemes. Renew. Energy 36, 2725–2732 (2011).

    Article  Google Scholar 

  39. 39.

    Malu, P. R., Sharma, U. S. & Pearce, J. M. Agrivoltaic potential on grape farms in India. Sustain. Energy Technol. Assess. 23, 104–110 (2017).

    Google Scholar 

  40. 40.

    Amaducci, S., Yin, X. & Colauzzi, M. Agrivoltaic systems to optimise land use for electric energy production. Appl. Energy 220, 545–561 (2018).

    Article  Google Scholar 

  41. 41.

    Armstrong, A., Waldron, S., Whitaker, J. & Ostle, N. J. Wind farm and solar park effects on plant-soil carbon cycling: uncertain impacts of changes in ground-level microclimate. Glob. Change Biol. 20, 1699–1706 (2014).

    Article  Google Scholar 

  42. 42.

    Diakhaté, S. et al. Impact of simulated drought stress on soil microbiology, and nematofauna in a native shrub + millet intercropping system in Senegal. Open J. Soil Sci. 6, 189–203 (2016).

    Article  Google Scholar 

  43. 43.

    Hernandez, R. R. et al. The native shrub, Pilostigma reticulatum, as an ecological “resource island” for mango trees in the Sahel. Agric. Ecosyst. Environ. 204, 51–61 (2015).

    CAS  Article  Google Scholar 

  44. 44.

    Elimelech, M. & Phillip, W. The future of seawater desalination: energy, technology, and the environment. Science 333, 712–717 (2011).

    CAS  Article  Google Scholar 

  45. 45.

    Michailidis, P. A. & Krokida, M. K. in Food Engineering Handbook: Food Process Engineering (eds Varzakas, T. & Tzia, C.) 375–436 (CRC Press, 2014).

  46. 46.

    Jaradat, M. A. et al. A fully portable robot system for cleaning solar panels. In 10th International Symposium on Mechatronics and its Applications (ISMA) (IEEE, 2015).

  47. 47.

    García, I. F., García, A. M., Díaz, J. A. R., Barrios, P. M. & Poyato, E. C. in Water Scarcity and Sustainable Agriculture in Semiarid Environment: Tools, Strategies, and Challenges for Woody Crops (eds Tejero, I. F. G. & Zuazo, V. H. D.) 41–59 (Elsevier, 2018).

  48. 48.

    Burney, J. A. & Naylor, R. L. Smallholder irrigation as a poverty alleviation tool in Sub-Saharan Africa. World Dev. 40, 110–123 (2012).

    Article  Google Scholar 

  49. 49.

    Burney, J., Woltering, L., Burke, M., Naylor, R. & Pasternak, D. Solar-powered drip irrigation enhances food security in the Sudano-Sahel. Proc. Natl Acad. Sci. USA 107, 1848–1853 (2010).

    CAS  Article  Google Scholar 

  50. 50.

    Planning guidance for the development of large scale ground mounted solar PV systems (BRE National Solar Centre, 2013).

  51. 51.

    Spencer, R. S., Macknick, J., Aznar, A., Warren, A. & Reese, M. O. Floating photovoltaic systems: assessing the technical potential of photovoltaic systems on man-made water bodies in the continental United States. Environ. Sci. Technol. 53, 1680–1689 (2019).

    CAS  Article  Google Scholar 

  52. 52.

    Trapani, K. & Redón Santafé, M. A review of floating photovoltaic installations: 2007–2013. Prog. Photovolt. Res. Appl. 23, 524–532 (2015).

    Article  Google Scholar 

  53. 53.

    Martinez-Alvarez, V., Maestre-Valero, J. F., Martin-Gorriz, B. & Gallego-Elvira, B. Experimental assessment of shade-cloth covers on agricultural reservoirs for irrigation in south-eastern Spain. Span. J. Agric. Res. 8, 122 (2010).

    Article  Google Scholar 

  54. 54.

    Choi, Y. K. A study on power generation analysis of floating PV system considering environmental impact. Int. J. Softw. Eng. Appl. 8, 75–84 (2014).

    Article  Google Scholar 

  55. 55.

    Lienhard, J. H., Thiel, G. P., Warsinger, D. M. & Banchik, L. D. Low Carbon Desalination: Status and Research, Development, and Demonstration Needs, Report of a workshop conducted at the Massachusetts Institute of Technology in association with the Global Clean Water Desalination Alliance (Massachusetts Institute of Technology, 2016).

  56. 56.

    Pugsley, A., Zacharopoulos, A., Mondol, J. D. & Smyth, M. Global applicability of solar desalination. Renew. Energy 88, 200–219 (2016).

    Article  Google Scholar 

  57. 57.

    Taha, H. The potential for air-temperature impact from large-scale deployment of solar photovoltaic arrays in urban areas. Sol. Energy 91, 358–367 (2013).

    CAS  Article  Google Scholar 

  58. 58.

    Masson, V., Bonhomme, M., Salagnac, J.-L., Briottet, X. & Lemonsu, A. Solar panels reduce both global warming and urban heat island. Front. Environ. Sci. 2, 14 (2014).

    Article  Google Scholar 

  59. 59.

    Porfiriev, B. Evaluation of human losses from disasters: The case of the 2010 heat waves and forest fires in Russia. Int. J. Disaster Risk Reduct. 7, 91–99 (2014).

    Article  Google Scholar 

  60. 60.

    Kenrick, D. T. & Macfarlane, S. W. Ambient temperature and horn honking: a field study of the heat/aggression relationship. Environ. Behav. 18, 179–191 (1986).

    Article  Google Scholar 

  61. 61.

    Bradford, K. J. et al. The dry chain: Reducing postharvest losses and improving food safety in humid climates. Trends Food Sci. Technol. 71, 84–93 (2018).

    CAS  Article  Google Scholar 

  62. 62.

    Alvarez, L. As power grid sputters in Puerto Rico, business does too. The New York Times (15 November 2017).

  63. 63.

    Chong, W. T., Fazlizan, A., Poh, S. C., Pan, K. C. & Ping, H. W. Early development of an innovative building integrated wind, solar and rain water harvester for urban high rise application. Energy Build. 47, 201–207 (2012).

    Article  Google Scholar 

  64. 64.

    Turner, W. R. Looking to nature for solutions. Nat. Clim. Change 8, 18–19 (2018).

    Article  Google Scholar 

  65. 65.

    Ricke, K., Drouet, L., Caldeira, K. & Tavoni, M. Country-level social cost of carbon. Nat. Clim. Change 8, 895–901 (2018).

    CAS  Article  Google Scholar 

  66. 66.

    Ghassemi, F., Jakeman, A. J. & Nix, H. A. (eds) Salinisation Of Land And Water Resources: Human Causes, Extent, Management And Case Studies (CAB International, 1995).

  67. 67.

    West, T. O. & Marland, G. A synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture: comparing tillage practices in the United States. Agric. Ecosyst. Environ. 91, 217–232 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

We thank K. Lamy for assisting with graphic design and A. Diene for informational contributions. Funding for R.R.H. was provided by the UC President’s Postdoctoral Fellowship; Agricultural Experiment Station Hatch projects CA-R-A-6689-H and CA-D-LAW-2352-H; the California Energy Commission (EPC-15-060); the Department of Land, Air, and Water Resources at University of California Davis (UCD); and the John Muir Institute of the Environment, UCD. Funding for A.A. was provided by a NERC Industrial Innovation Fellowship (NE/R013489/1). Funding for M.K.H. was provided, in part, by the Energy Graduate Group, UCD. Funding for R.D. was provided by the National Renewable Energy Laboratory (NREL) through the InSPIRE Project. This work was authored, in part, by NREL (G.A.H., J.M.), operated by Alliance for Sustainable Energy, LLC, for the US Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by the US Department of Energy Office of Energy Efficiency (EERE) and Renewable Energy Solar Energy Technologies Office (SETO), Agreement No. 34165. The views expressed in the article do not necessarily represent the views of the DOE, the US Fish and Wildlife Service, or the US Government. The US Government retains and the publisher, by accepting the article for publication, acknowledges that the US Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for US Government purposes.

Author information

Affiliations

Authors

Contributions

R.R.H initiated the research and led the conceptual design and writing of the manuscript. All authors contributed to further content development and drafting of the manuscript.

Corresponding author

Correspondence to Rebecca R. Hernandez.

Ethics declarations

Competing interests

S.B.E. declares Wells Fargo to be his employer wherein he acts as a financier of solar and wind energy projects. All other authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Summary for Policy Makers, Supplementary Boxes 1–4

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hernandez, R.R., Armstrong, A., Burney, J. et al. Techno–ecological synergies of solar energy for global sustainability. Nat Sustain 2, 560–568 (2019). https://doi.org/10.1038/s41893-019-0309-z

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing