Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Improving network approaches to the study of complex social–ecological interdependencies

Abstract

Achieving effective, sustainable environmental governance requires a better understanding of the causes and consequences of the complex patterns of interdependencies connecting people and ecosystems within and across scales. Network approaches for conceptualizing and analysing these interdependencies offer one promising solution. Here, we present two advances we argue are needed to further this area of research: (i) a typology of causal assumptions explicating the causal aims of any given network-centric study of social–ecological interdependencies; (ii) unifying research design considerations that facilitate conceptualizing exactly what is interdependent, through what types of relationships and in relation to what kinds of environmental problems. The latter builds on the appreciation that many environmental problems draw from a set of core challenges that re-occur across contexts. We demonstrate how these advances combine into a comparative heuristic that facilitates leveraging case-specific findings of social–ecological interdependencies to generalizable, yet context-sensitive, theories based on explicit assumptions of causal relationships.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Describing social–ecological systems as social–ecological networks.
Fig. 2: A heuristic for facilitating comparable social–ecological network studies.
Fig. 3: Social–ecological alignment in social–ecological networks.

References

  1. Centeno, M. A., Nag, M., Patterson, T. S., Shaver, A. & Windawi, A. J. The emergence of global systemic risk. Annu. Rev. Sociol. 41, 65–85 (2015).

    Article  Google Scholar 

  2. Lambin, E. F. & Meyfroidt, P. Global land use change, economic globalization, and the looming land scarcity. Proc. Natl Acad. Sci. USA 108, 3465–3472 (2011).

    CAS  Article  Google Scholar 

  3. May, R. M., Levin, S. A. & Sugihara, G. Ecology for bankers. Nature 451, 893–895 (2008).

    CAS  Article  Google Scholar 

  4. Yu, Y., Feng, K. & Hubacek, K. Tele-connecting local consumption to global land use. Glob. Environ. Change 23, 1178–1186 (2013).

    Article  Google Scholar 

  5. DeFries, R. & Nagendra, H. Ecosystem management as a wicked problem. Science 356, 265–270 (2017).

    CAS  Article  Google Scholar 

  6. Ostrom, E. A general framework for analyzing sustainability of social-ecological systems. Science 325, 419–422 (2009).

    CAS  Article  Google Scholar 

  7. Berkes, F., Folke, C. & Colding, J. Navigating Social-Ecological Systems: Building Resilience for Complexity and Change (Cambridge Univ. Press, 2003).

  8. Pelosi, C., Goulard, M. & Balent, G. The spatial scale mismatch between ecological processes and agricultural management: do difficulties come from underlying theoretical frameworks? Agric. Ecosyst. Environ. 139, 455–462 (2010).

    Article  Google Scholar 

  9. Stafford, S. G. et al. Now is the time for action: transitions and tipping points in complex environmental systems. Environ. Sci. Policy Sustain. Dev. 52, 38–45 (2009).

    Article  Google Scholar 

  10. Moreno, J. L. & Jennings, H. H. Statistics of social configurations. Sociometry 1, 342–374 (1938).

    Article  Google Scholar 

  11. Paine, R. T. Food webs: linkage, interaction strength and community infrastructure. J. Anim. Ecol. 49, 666–685 (1980).

    Article  Google Scholar 

  12. Bascompte, J., Jordano, P., Melián, C. J. & Olesen, J. M. The nested assembly of plant–animal mutualistic networks. Proc. Natl Acad. Sci. USA 100, 9383–9387 (2003).

    CAS  Article  Google Scholar 

  13. Cantwell, M. D. & Forman, R. T. T. Landscape graphs: ecological modeling with graph-theory to detect configurations common to diverse landscapes. Landsc. Ecol. 8, 239–255 (1993).

    Article  Google Scholar 

  14. Janssen, M. A. et al. Toward a network perspective of the study of resilience in social-ecological systems. Ecol. Soc. 11, 15 (2006).

    Article  Google Scholar 

  15. Dee, L. E. et al. Operationalizing network theory for ecosystem service assessments. Trends Ecol. Evol. 32, 118–130 (2017).

    Article  Google Scholar 

  16. Bodin, Ö. & Tengö, M. Disentangling intangible social–ecological systems. Glob. Environ. Change 22, 430–439 (2012).

    Article  Google Scholar 

  17. Bodin, Ö., Crona, B., Thyresson, M., Golz, A.-L. & Tengö, M. Conservation success as a function of good alignment of social and ecological structures and processes. Conserv. Biol. 28, 1371–1379 (2014).

    Article  Google Scholar 

  18. Barnes, M. L. et al. Social-ecological alignment and ecological conditions in coral reefs. Nat. Commun. 10, 2039 (2019).

    Article  Google Scholar 

  19. Brandes, U., Robins, G., McCraine, A. & Wasserman, S. What is network science?. Netw. Sci. 1, 1–15 (2013).

    Article  Google Scholar 

  20. Biesbroek, R., Dupuis, J. & Wellstead, A. Explaining through causal mechanisms: resilience and governance of social–ecological systems. Curr. Opin. Environ. Sustain. 28, 64–70 (2017).

    Article  Google Scholar 

  21. Magliocca, N. R. et al. Closing global knowledge gaps: producing generalized knowledge from case studies of social-ecological systems. Glob. Environ. Change 50, 1–14 (2018).

    Article  Google Scholar 

  22. Ferraro, P. J., Sanchirico, J. N. & Smith, M. D. Causal inference in coupled human and natural systems. Proc. Natl Acad. Sci. USA 116, 5311–5318 (2019).

    CAS  Article  Google Scholar 

  23. Merton, R. K. Social Theory and Social Structure (Free Press, 1968).

  24. McRae, B. H. & Beier, P. Circuit theory predicts Gene flow in plant and animal populations. Proc. Natl Acad. Sci. USA 104, 19885–19890 (2007).

    CAS  Article  Google Scholar 

  25. Qiu, J. et al. Evidence-based causal chains for linking health, development, and conservation actions. Bioscience 68, 182–193 (2018).

    Article  Google Scholar 

  26. Young, O. R. et al. A portfolio approach to analyzing complex human-environment interactions: institutions and land change. Ecol. Soc. 11, 31 (2006).

    Article  Google Scholar 

  27. Munafò, M. R. & Davey Smith, G. Robust research needs many lines of evidence. Nature 553, 399–401 (2018).

    Article  Google Scholar 

  28. Janssen, M. A., Holahan, R., Lee, A. & Ostrom, E. Lab Experiments for the study of social-ecological systems. Science 328, 613–617 (2010).

    CAS  Article  Google Scholar 

  29. Axelrod, R. The Complexity of Cooperation (Princeton Univ. Press, 1997).

  30. Matous, P. & Wang, P. External exposure, boundary-spanning, and opinion leadership in remote communities: a network experiment. Soc. Netw. 56, 10–22 (2019).

    Article  Google Scholar 

  31. Olsson, L. & Jerneck, A. Social fields and natural systems: integrating knowledge about society and nature. Ecol. Soc. 23, art26 (2018).

    Article  Google Scholar 

  32. Groce, J. E., Farrelly, M. A., Jorgensen, B. S. & Cook, C. N. Using social-network research to improve outcomes in natural resource management. Conserv. Biol. 33, 53–65 (2018).

    Article  Google Scholar 

  33. Ekstrom, J. A. & Young, O. R. Evaluating functional fit between a set of institutions and an ecosystem. Ecol. Soc. 14, 16 (2009).

    Article  Google Scholar 

  34. Lubell, M. Governing institutional complexity: the ecology of games framework. Policy Stud. J. 41, 537–559 (2013).

    Article  Google Scholar 

  35. Raudsepp-Hearne, C., Peterson, G. D. & Bennett, E. M. Ecosystem service bundles for analyzing tradeoffs in diverse landscapes. Proc. Natl Acad. Sci. USA 107, 5242–5247 (2010).

    CAS  Article  Google Scholar 

  36. Morrison, T. H. Evolving polycentric governance of the Great Barrier Reef. Proc. Natl Acad. Sci. USA 114, E3013–E3021 (2017).

    CAS  Article  Google Scholar 

  37. Fischer, M. Coalition structures and policy change in a consensus democracy. Policy Stud. J. 42, 344–366 (2014).

    Article  Google Scholar 

  38. Ostrom, E. Governing the Commons: The Evolution of Institutions for Collective Action (Cambridge Univ. Press, 1990).

  39. Lubell, M., Jasny, L. & Hastings, A. Network governance for invasive species management. Conserv. Lett. 10, 699–707 (2016).

    Article  Google Scholar 

  40. Bodin, Ö. Collaborative environmental governance: achieving collective action in social-ecological systems. Science 357, eaan1114 (2017).

    Article  Google Scholar 

  41. Barnes, M. L. et al. The social structural foundations of adaptation and transformation in social–ecological systems. Ecol. Soc. 22, 16 (2017).

    Article  Google Scholar 

  42. Bodin, Ö. & Crona, B. I. The role of social networks in natural resource governance: what relational patterns make a difference? Glob. Environ. Change 19, 366–374 (2009).

    Article  Google Scholar 

  43. Levy, M. A. & Lubell, M. N. Innovation, cooperation, and the structure of three regional sustainable agriculture networks in California. Reg. Environ. Change 18, 1235–1246 (2017).

    Article  Google Scholar 

  44. Mcallister, R. R. J., Robinson, C. J., Maclean, K., Perry, S. & Liu, S. Balancing collaboration with coordination: contesting eradication in the Australian plant pest and disease biosecurity system. Int. J. Commons 11, 330–354 (2017).

    Article  Google Scholar 

  45. Koontz, T. M. & Newig, J. From planning to implementation: top-down and bottom-up approaches for collaborative watershed management. Policy Stud. J. 42, 416–442 (2014).

    Article  Google Scholar 

  46. Meyfroidt, P. et al. Middle-range theories of land system change. Glob. Environ. Change 53, 52–67 (2018).

    Article  Google Scholar 

  47. Folke, C., Pritchard, L., Berkes, F., Colding, J. & Svedin, U. The problem of fit between ecosystems and institutions: ten years later. Ecol. Soc. 12, 30 (2007).

    Article  Google Scholar 

  48. Epstein, G. et al. Institutional fit and the sustainability of social–ecological systems. Curr. Opin. Environ. Sustain. 14, 34–40 (2015).

    Article  Google Scholar 

  49. Alexander, S. M., Armitage, D., Carrington, P. J. & Bodin, Ö. Examining horizontal and vertical social ties to achieve social-ecological fit in an emerging marine reserve network. Aquat. Conserv. Mar. Freshw. Ecosyst. 27, 1209–1223 (2017).

    Article  Google Scholar 

  50. Chadès, I. et al. General rules for managing and surveying networks of pests, diseases, and endangered species. Proc. Natl Acad. Sci. USA 108, 8323–8328 (2011).

    Article  Google Scholar 

  51. McAllister, R. R. J. et al. From local to central: a network analysis of who manages plant pest and disease outbreaks across scales. Ecol. Soc. 20, 67 (2015).

    Article  Google Scholar 

  52. Matti, S. & Sandström, A. The rationale determining advocacy coalitions: examining coordination networks and corresponding beliefs. Policy Stud. J. 39, 385–410 (2011).

    Article  Google Scholar 

  53. Ingold, K. et al. Misfit between physical affectedness and regulatory embeddedness: the case of drinking water supply along the Rhine River. Glob. Environ. Change 48, 136–150 (2018).

    Article  Google Scholar 

  54. Treml, E., Fidelman, P. I. J., Kininmonth, S., Ekstrom, J. & Bodin, Ö. Analyzing the (mis)fit between the institutional and ecological networks of the Indo-West Pacific. Glob. Environ. Change 31, 263–271 (2015).

    Article  Google Scholar 

  55. Pittman, J. & Armitage, D. How does network governance affect social-ecological fit across the land-sea interface? An empirical assessment from the Lesser Antilles. Ecol. Soc. 22, art5 (2017).

    Article  Google Scholar 

  56. Bodin, Ö. et al. Theorizing benefits and constraints in collaborative environmental governance: a transdisciplinary social-ecological network approach for empirical investigations. Ecol. Soc. 21, 40 (2016).

    Article  Google Scholar 

  57. Guerrero, A. M., Bodin, Ö., McAllister, R. R. J. & Wilson, K. A. Achieving social-ecological fit through bottom-up collaborative governance: an empirical investigation. Ecol. Soc. 20, 41 (2015).

    Article  Google Scholar 

  58. Angst, M. Networks of Swiss water governance issues. studying fit between media attention and organizational activity. Soc. Nat. Resour. https://doi.org/10.1080/08941920.2018.1535102 (2019).

  59. Robins, G. Doing Social Network Research: Network-based Research Design for Social Scientists (Sage, 2015).

  60. Berardo, R. & Scholz, J. T. Self-organizing policy networks: risk, partner selection, and cooperation in estuaries. Am. J. Pol. Sci. 54, 632–649 (2010).

    Article  Google Scholar 

  61. Bergsten, A., Galafassi, D. & Bodin, Ö. The problem of spatial fit in social-ecological systems: detecting mismatches between ecological connectivity and land management in an urban region. Ecol. Soc. 19, 6 (2014).

    Article  Google Scholar 

  62. Sayles, J. S. & Baggio, J. A. Social–ecological network analysis of scale mismatches in estuary watershed restoration. Proc. Natl Acad. Sci. USA 114, E1776–E1785 (2017).

    CAS  Article  Google Scholar 

  63. Bodin, Ö. & Nohrstedt, D. Formation and performance of collaborative disaster management networks: evidence from a Swedish wildfire response. Glob. Environ. Change 41, 183–194 (2016).

    Article  Google Scholar 

  64. Christensen, N. L. et al. The report of the Ecological Society of America Committee on the scientific basis for ecosystem management. Ecol. Appl. 6, 665–691 (1996).

    Article  Google Scholar 

Download references

Acknowledgements

J.S.S. was funded by an appointment to the Research Participation Program for the US Environmental Protection Agency (EPA), Office of Research and Development, administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the US Department of Energy and EPA. The views expressed in this article are those of the authors and do not necessarily reflect the views or policies of the US EPA or any other named funding body. A.M.G. was supported by the Centre of Excellence for Environmental Decisions. T.H.M., G.S.C. and M.L.B. were supported by the Australian Research Council Centre of Excellence for Coral Reef Studies. Ö.B. acknowledges support from Formas and the Swedish Research Council. M. Lubell is acknowledged for providing comments on an earlier version.

Author information

Authors and Affiliations

Authors

Contributions

Ö.B. designed and performed the research, led the collaborative work and the writing of the paper. All other authors contributed to the research, the analyses and the writing based on their specific expertise, and are listed alphabetically in the author list following Ö.B.

Corresponding author

Correspondence to Ö. Bodin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Information

Supplementary Methods, Table 1, Results and refs. 1–13.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bodin, Ö., Alexander, S.M., Baggio, J. et al. Improving network approaches to the study of complex social–ecological interdependencies. Nat Sustain 2, 551–559 (2019). https://doi.org/10.1038/s41893-019-0308-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41893-019-0308-0

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing