Article | Published:

Potential contributions of pre-Inca infiltration infrastructure to Andean water security

Abstract

Water resources worldwide are under severe stress from increasing climate variability and human pressures. In the tropical Andes, pre-Inca cultures developed nature-based water harvesting technologies to manage drought risks under natural climatic extremes. While these technologies have gained renewed attention as a potential strategy to increase water security, limited scientific evidence exists about their potential hydrological contributions at catchment scale. Here, we evaluate a 1,400-year-old indigenous infiltration enhancement system that diverts water from headwater streams onto mountain slopes during the wet season to enhance the yield and longevity of downslope natural springs. Infiltrated water is retained for an average of 45 d before resurfacing, confirming the system’s ability to contribute to dry-season flows. We estimate that upscaling the system to the source-water areas of the city of Lima can potentially delay 99 × 106 m3 yr−1 of streamflow and increase dry-season flows by 7.5% on average, which may provide a critical complement to conventional engineering solutions for water security.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Data availability

Data from the hydrological monitoring of catchments C1 and C2 are described in Ochoa-Tocachi et al.58 and available from Data Citation 1 therein and in the Supplementary Information (Supplementary Data 1). The data consist of the original time series of rainfall and streamflow and physical characteristics and hydrological indices of the monitored catchments. The data from the dye-tracer experiments are provided in Supplementary Tables 2 and 3. The data from the long-term rainfall stations, Huamantanga and Chosica and Rimac river flow were provided by SENAMHI and ANA and are included here with permission67 (Supplementary Data 2 and 3).

Code availability

Calculations were implemented using custom code in MATLAB R2018b (v.9.5). The scripts are available on https://github.com/topicster/mamanteo67.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Van Loon, A. F. et al. Drought in the anthropocene. Nat. Geosci. 9, 89–91 (2016).

  2. 2.

    Mishra, A. K. & Singh, V. P. A review of drought concepts. J. Hydrol. 391, 202–216 (2010).

  3. 3.

    Van Loon, A. F. Hydrological drought explained. WIREs Water 2, 359–392 (2015).

  4. 4.

    Ledger, M. E., Brown, L. E., Edwards, F. K., Milner, A. M. & Woodward, G. Drought alters the structure and functioning of complex food webs. Nat. Clim. Change 3, 223–227 (2012).

  5. 5.

    van Vliet, M. T. H. et al. Vulnerability of US and European electricity supply to climate change. Nat. Clim. Change 2, 676–681 (2012).

  6. 6.

    von Uexkull, N., Croicu, M., Fjelde, H. & Buhaug, H. Civil conflict sensitivity to growing-season drought. Proc. Natl Acad. Sci. USA 113, 12391–12396 (2016).

  7. 7.

    Nature-Based Solutions for Water (UNESCO, 2018).

  8. 8.

    Ley No. 30215 De Mecanismos De Retribución Por Servicios Ecosistémicos—Law No. 30215 on Reward Mechanisms for Ecosystem Services (Ministry of Environment of Peru, 2014).

  9. 9.

    Somers, L. D. et al. Does hillslope trenching enhance groundwater recharge and baseflow in the Peruvian Andes? Hydrol. Process. 32, 318–331 (2018).

  10. 10.

    Grainger, S. et al. The development and intersection of highland-coastal scale frames: a case study of water governance in central Peru. J. Environ. Pol. Plan. https://doi.org/10.1080/1523908X.2019.1566057 (2019).

  11. 11.

    Ávila, J. El Sistema de Infiltración Hídrica para el Mamanteo de Huamantanga—The Water Infiltration System for Huamantanga’s Mamanteo (Alternativa NGO, 2012).

  12. 12.

    Apaza, D., Arroyo, R. & Alcencastre, A. Las Amunas de Huarochirí, Recarga de Acuíferos en los Andes—The Amunas of Huarochirí, Aquifer Recharge in the Andes (Gestión Social del Agua y Ambiente en Cuencas, 2006).

  13. 13.

    Garnett, S. T. et al. A spatial overview of the global importance of Indigenous lands for conservation. Nat. Sustain. 1, 369–374 (2018).

  14. 14.

    Beckers, B., Berking, J. & Schutt, B. Ancient water harvesting methods in the drylands of the mediterranean and western asia. J. Anc. Stud. 2, 145–164 (2008).

  15. 15.

    Dande, R., Bele, A., Padgilwar, P. P. & Kulkarni, N. Sustainable rain water harvesting techniques prevailing in ancient India. Int. J. Theor. Appl. Res. Mech. Eng. 5, 16–24 (2016).

  16. 16.

    DiNapoli, R. J. et al. Rapa Nui (Eastern Island) monument (ahu) locations explained by freshwater sources. PLoS ONE 14, e0210409 (2019).

  17. 17.

    Brosnan, T., Becker, M. W. & Lipo, C. P. Coastal groundwater discharge and the ancient inhabitants of Rapa Nui (Easter Island), Chile. Hydrogeol. J. 27, 519–534 (2019).

  18. 18.

    Pulido-Bosch, A. & Ben Sbih, Y. Centuries of artificial recharge on the southern edge of the Sierra Nevada (Granada, Spain). Environ. Geol. 26, 57–63 (1995).

  19. 19.

    Headworth, H. G. Early Arab water technology in Southern Spain. Water Environ. J. 18, 161–165 (2004).

  20. 20.

    Wright, K. R. & Valencia Zegarra, A. Machu Picchu: A Civil Engineering Marvel (ASCE Press, 2000).

  21. 21.

    Wright, K. R., Witt, G. D. & Valencia Zegarra, A. Hydrogeology and paleohydrology of ancient Machu Picchu. Groundwater 35, 660–666 (1997).

  22. 22.

    Vogl, A. L. et al. Mainstreaming investments in watershed services to enhance water security: Barriers and opportunities. Environ. Sci. Policy 75, 19–27 (2017).

  23. 23.

    Manz, B. et al. High-resolution satellite-gauge merged precipitation climatologies of the Tropical Andes. J. Geophys. Res. Atmos. 121, 1190–1207 (2016).

  24. 24.

    Boers, N., Bookhagen, B., Marwan, N., Kurths, J. & Marengo, J. Complex networks identify spatial patterns of extreme rainfall events of the South American Monsoon System. Geophys. Res. Lett. 40, 4386–4392 (2013).

  25. 25.

    Romatschke, U. & Houze, R. A. Extreme summer convection in South America. J. Clim. 23, 3761–3791 (2010).

  26. 26.

    Garreaud, R. D. The Andes climate and weather. Adv. Geosci. 22, 3–11 (2009).

  27. 27.

    Houston, J. & Hartley, A. The central Andean west-slope rainshadow and its potential contribution to the origin of hyperaridity in the Atacama Desert. Int. J. Climatol. 23, 1453–1464 (2003).

  28. 28.

    Chen, D., Cane, M. A., Kaplan, A., Zebiak, S. E. & Huang, D. Predictability of El Niño over the past 148 years. Nature 428, 733–736 (2004).

  29. 29.

    De Bièvre, B. & Acosta, L. in Mountains and Climate Change: A Global Concern (eds Kohler, T. et al.) Ch. 2.2 (Centre for Development and Environment, Swiss Agency for Development and Cooperation and Geographica Bernensia, 2014).

  30. 30.

    Ochoa-Tocachi, B. F., Buytaert, W. & De Bièvre, B. Regionalization of land-use impacts on streamflow using a network of paired catchments. Water Resour. Res. 52, 6710–6729 (2016).

  31. 31.

    Bonnesoeur, V. et al. Impacts of forests and forestation on hydrological services in the Andes: a systematic review. Ecol. Manag. 433, 569–584 (2019).

  32. 32.

    Bradley, R. S., Vuille, M., Diaz, H. F. & Vergara, W. Threats to water supplies in the tropical Andes. Science 312, 1755–1756 (2006).

  33. 33.

    Buytaert, W., Célleri, R. & Timbe, L. Predicting climate change impacts on water resources in the tropical Andes: effects of GCM uncertainty. Geophys. Res. Lett. 36, L07406 (2009).

  34. 34.

    Viviroli, D. et al. Climate change and mountain water resources: overview and recommendations for research, management and policy. Hydrol. Earth Syst. Sci. 15, 471–504 (2011).

  35. 35.

    Ragettli, S., Immerzeel, W. W. & Pellicciotti, F. Contrasting climate change impact on river flows from high-altitude catchments in the Himalayan and Andes Mountains. Proc. Natl Acad. Sci. USA 113, 9222–9227 (2016).

  36. 36.

    Gammie, G. & De Bièvre, B. Assessing Green Interventions for the Water Supply of Lima, Peru (Forest Trends, 2015).

  37. 37.

    Vega-Jácome, F., Lavado-Casimiro, W. & Felipe-Obando, O. Assessing hydrological changes in a regulated river system over the last 90 years in Rimac Basin (Peru). Theor. Appl. Climatol. 132, 347–362 (2018).

  38. 38.

    Gutiérrez, O. F. Huamantanga: Tierra Fecunda, Heroica y Legendaria—Huamantanga: Fertile, Heroic, and Legendary Land (Orlando Francisco Gutiérrez Reymundo, 2018).

  39. 39.

    Rumbo a un Programa Nacional de Siembra y Cosecha de Agua: Aportes y Reflexiones Desde la Práctica—Towards a National Programme of Water Harvesting: Contributions and Insights From the Practice (Ministerio de Agricultura y Riego del Perú, Viceministerio de Políticas Agrarias, 2016).

  40. 40.

    Ochoa-Tocachi, B. F. et al. Impacts of land use on the hydrological response of tropical Andean catchments. Hydrol. Process. 30, 4074–4089 (2016).

  41. 41.

    Zulkafli, Z. et al. User-driven design of decision support systems for polycentric environmental resources management. Environ. Model. Softw. 88, 58–73 (2017).

  42. 42.

    Vitvar, T., Aggarwal, P. K. & McDonnell, J. J. in Isotopes in the Water Cycle: Past, Present and Future of a Developing Science (eds Aggarwal, P. K. et al.) Ch. 12 (Springer, 2005).

  43. 43.

    Jasechko, S., Kirchner, J. W., Welker, J. M. & McDonnell, J. J. Substantial proportion of global streamflow less than three months old. Nat. Geosci. 9, 126–129 (2016).

  44. 44.

    Gleick, P. H. & Palaniappan, M. Peak water limits to freshwater withdrawal and use. Proc. Natl Acad. Sci. USA 107, 11155–11162 (2010).

  45. 45.

    Rosero-López, D. et al. Streamlined eco-engineering approach helps define environmental flows for tropical Andean headwaters. Freshw. Biol. https://doi.org/10.1111/fwb.13307 (2019).

  46. 46.

    Hommes, L. & Boelens, R. From natural flow to ‘working river’: hydropower development, modernity and socio-territorial transformations in Lima’s Rímac Watershed. J. Hist. Geogr. 62, 85–95 (2018).

  47. 47.

    Welch, L. A. & Allen, D. M. Consistency of groundwater flow patterns in mountainous topography: implications for valley bottom water replenishment and for defining groundwater flow boundaries. Water Resour. Res. 48, W05526 (2012).

  48. 48.

    Hall, J. S., Kirn, V. & Yanguas-Fernández, E. Managing Watersheds for Ecosystem Services in the Steepland Neotropics (Smithsonian Tropical Research Institute, 2015).

  49. 49.

    Ley No. 30045 De Modernización De Los Servicios De Saneamiento—Law No. 30045 on Modernisation of Sanitation Services (Ministry of Housing, Construction, and Sanitation of Peru, 2013).

  50. 50.

    Kaser, G., Grosshauser, M. & Marzeion, B. Contribution potential of glaciers to water availability in different climate regimes. Proc. Natl Acad. Sci. USA 107, 20223–20227 (2010).

  51. 51.

    Buytaert, W. et al. Glacial melt content of water use in the tropical Andes. Environ. Res. Lett. 12, 114014 (2017).

  52. 52.

    Tovar, C., Arnillas, C. A., Cuesta, F. & Buytaert, W. Diverging responses of tropical andean biomes under future climate conditions. PLoS ONE 8, e63634 (2013).

  53. 53.

    Buytaert, W. & De Bièvre, B. Water for cities: the impact of climate change and demographic growth in the tropical Andes. Water Resour. Res. 48, W08503 (2012).

  54. 54.

    Romero-López, M. & Collado-Solís, C. Acercamiento a las Estrategias de Vida de las Familias Rurales de Matiguás y Río Blanco—Approach to the Life Strategies of the Rural Families of Matiguás and Río Blanco (Instituto de Investigación y Desarrollo, 2013).

  55. 55.

    Bastiaensen, J., Merlet, P. & Flores, S. Rutas de Desarrollo en Territorios Humanos: Las Dinámicas de la Vía Láctea en Nicaragua—Development Pathways in Human Territories: Dynamics of the Milky Way in Nicaragua (UCA Publicaciones, 2015).

  56. 56.

    Buytaert, W. et al. Citizen science in hydrology and water resources: opportunities for knowledge generation, ecosystem service management, and sustainable development. Front. Earth Sci. 2, 26 (2014).

  57. 57.

    Aley, T. Groundwater Tracing Handbook (Ozark Underground Laboratory, 2002).

  58. 58.

    Ochoa-Tocachi, B. F. et al. High-resolution hydrometeorological data from a network of headwater catchments in the tropical Andes. Sci. Data 5, 180080 (2018).

  59. 59.

    Gustard, A., Bullock, A. & Dixon, J. M. Low Flow Estimation in the United Kingdom, Report No. 108 (Institute of Hydrology, 1992).

  60. 60.

    Hollister, V. F. & Sirvas, E. B. The calipuy formation of northern Peru, and its relation to volcanism in the Northern Andes. J. Volcanol. Geotherm. Res. 4, 89–98 (1978).

  61. 61.

    Lerner, D. N., Mansell-Moullin, M., Dellow, D. J. & Lloyd, J. W. Groundwater studies for Lima, Peru. IAHS Publ. 135, 17–30 (1982).

  62. 62.

    Hydrogeological Map of Peru (Instituto Geológico, Minero y Metalúrgico del Perú, 2016).

  63. 63.

    Kieser, M. S. Restoration of Amunas: Quantifying Potential Baseflow Improvements (Forest Trends, 2014).

  64. 64.

    Shuttle Radar Topography Mission (SRTM) 1 Arc-Second Global: SRTM1S13W077V3 (US Geological Survey, Earth Resources Observation and Science Center, 2014).

  65. 65.

    Van Loon, A. F. & Laaha, G. Hydrological drought severity explained by climate and catchment characteristics. J. Hydrol. 526, 3–14 (2015).

  66. 66.

    Beyene, B. S., Van Loon, A. F., Van Lanen, H. A. J. & Torfs, P. J. J. F. Investigation of variable threshold level approaches for hydrological drought identification. Hydrol. Earth Syst. Sci. Discuss. 11, 12765–12797 (2014).

  67. 67.

    Ochoa-Tocachi, B. F. Computer code for data processing and simulation of pre-Inca infiltration enhancement systems (mamanteo and amunas). GitHub https://github.com/topicster/mamanteo (2019).

Download references

Acknowledgements

Special thanks to the people of Huamantanga and their authorities for providing constant participation, support and consent to our work. The paired catchment monitoring and the infiltration system restoration were set up thanks to funding from The Natural Capital Project, CONDESAN, Alternativa NGO, AQUAFONDO and TNC. We thank SENAMHI, ANA and iMHEA for the hydrometeorological data provided. We acknowledge funding from UK Research and Innovation (NERC grant no. NE/K010239-1) and the Natural Infrastructure for Water Security Project funded by USAID and the Government of Canada. B.F.O.-T. was funded by an Imperial College President’s PhD Scholarship and the Science and Solutions for a Changing Planet DTP (UKRI NERC grant no. NE/L002515/1). W. Lavado and F. Vega-Jácome provided useful information for the interpretation of regional hydrometeorological data. A. Butler and C. Hackshaw provided helpful comments on the manuscript. Fig. 2 was developed with help from Soapbox Communications Ltd.

Author information

B.F.O.-T., B.D.B., K.P., L.A., J.G.-R., G.G. and W.B. designed the research approach. B.D.B., K.P., L.A., J.D.B., J.A., J.G.-R. and O.A. designed the experiments. J.D.B., J.A., K.P., J.G.-R., O.A., F.M., Z.Z. and S.G. performed the experiments and fieldwork. B.F.O.-T., J.D.B., J.A., W.B. and B.D.B. analysed the data. B.F.O.-T. and W.B. developed the modelling approach. W.B., B.D.B., G.G. were principal investigators of research projects that funded this work. B.F.O.-T. and W.B. wrote the paper with further contributions from all authors. All authors were involved and participated in the discussion of ideas, read and approved the final version of the manuscript.

Competing interests

The authors declare no competing interests.

Correspondence to Boris F. Ochoa-Tocachi.

Supplementary information

Supplementary Information

Supplementary Discussion, Supplementary Figs. 1–8, Supplementary Tables 1–8, Supplementary References

Supplementary Table 9

Record of interviews and meetings with local community members as part of the social science research in Huamantanga

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Further reading

Fig. 1: Spatiotemporal variability of precipitation in the Peruvian Andes.
Fig. 2: Conceptual model of the pre-Inca infiltration enhancement system.
Fig. 3: Spatial distribution of the infiltration system and monitoring experiments.
Fig. 4: Time series of rainfall, streamflow and tracer emergence in springs.
Fig. 5: Potential contributions of pre-Inca infiltration infrastructure to Lima’s water supply.