Methane removal and atmospheric restoration

Zeolites and other technologies should be evaluated and pursued for reducing methane concentrations in the atmosphere from 1,860 ppb to preindustrial levels of ~750 ppb. Such a goal of atmospheric restoration provides a positive framework for change at a time when climate action is desperately needed.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: A hypothetical industrial array oxidizing CH4 to CO2.

Image by Stan Coffman

References

  1. 1.

    Le Quéré, C. et al. Earth Syst. Sci. Data 10, 405–448 (2018).

    Article  Google Scholar 

  2. 2.

    van Vuuren, D. P. et al. Nat. Clim. Change 8, 391–397 (2018).

    Article  Google Scholar 

  3. 3.

    Tavoni, M. & Socolow, R. Clim. Change 118, 1–14 (2013).

    Article  Google Scholar 

  4. 4.

    Jackson, R. B. et al. Environ. Res. Lett. 12, 110201 (2017).

    Article  Google Scholar 

  5. 5.

    Etminan, M., Myhre, G., Highwood, E. J. & Shine, K. P. Geophys. Res. Lett. 43, 12614–12623 (2016).

    CAS  Article  Google Scholar 

  6. 6.

    Saunois, M. et al. Earth Syst. Sci. Data 8, 697–751 (2016).

    Article  Google Scholar 

  7. 7.

    Jackson, R. B. & Salzman, J. Issues Sci. Technol. 26, 67–76 (2010).

    Google Scholar 

  8. 8.

    Boucher, O. & Folberth, G. A. Atmos. Environ. 44, 3343–3345 (2010).

    CAS  Article  Google Scholar 

  9. 9.

    Cargnello, M. et al. Science 337, 713–717 (2012).

    CAS  Article  Google Scholar 

  10. 10.

    Kim, J. et al. Nat. Commun. 4, 1694 (2013).

    Article  Google Scholar 

  11. 11.

    Snyder, B. E. R. et al. Nature 536, 317–321 (2016).

    CAS  Article  Google Scholar 

  12. 12.

    Tomkins, P., Ranocchiari, M. & van Bokhoven, J. A. Acc. Chem. Res. 50, 418–425 (2017).

    CAS  Article  Google Scholar 

  13. 13.

    Dubkov, K. A. et al. J. Mol. Catal. A. 123, 155–161 (1997).

    CAS  Article  Google Scholar 

  14. 14.

    Dinh, K. T. et al. ACS Catal. 8, 8306–8313 (2018).

    CAS  Article  Google Scholar 

  15. 15.

    Bracco, S. et al. J. Mater. Chem. A 5, 10328–10337 (2017).

    CAS  Article  Google Scholar 

  16. 16.

    de_Richter, R., Ming, T., Davies, P., Liu, W. & Caillol, S. Prog. Energy Combust. Sci. 60, 68–96 (2017).

    Article  Google Scholar 

  17. 17.

    World Energy Outlook 2017 (International Energy Agency, 2017); https://www.iea.org/weo2017/

  18. 18.

    Ming, T., de_Richter, R., Shen, S. & Caillol, S. Environ. Sci. Pollut. Res. 23, 6119–6138 (2016).

    CAS  Article  Google Scholar 

  19. 19.

    Konsolakis, M. ACS Catal. 5, 6397–6421 (2015).

    CAS  Article  Google Scholar 

  20. 20.

    Tsai, M.-L. et al. J. Am. Chem. Soc. 136, 3522–3529 (2014).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This Comment is a contribution of the Global Carbon Project (globalcarbonproject.org). We acknowledge support for general research on methane from the Gordon and Betty Moore Foundation (GBMF5439; R.B.J. and J.G.C.), the Stanford Natural Gas Initiative (R.B.J., M.C.), US National Science Foundation (CHE-1660611; E.I.S.), and the Australian National Environmental Science Program – Earth Systems and Climate Change Hub (J.G.C.). We also acknowledge H. M. Rhoda and S. Coffman for assistance with the manuscript and artwork, respectively.

Author information

Affiliations

Authors

Corresponding author

Correspondence to R. B. Jackson.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jackson, R.B., Solomon, E.I., Canadell, J.G. et al. Methane removal and atmospheric restoration. Nat Sustain 2, 436–438 (2019). https://doi.org/10.1038/s41893-019-0299-x

Download citation

Further reading

Search

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing