Comment | Published:

Methane removal and atmospheric restoration

Zeolites and other technologies should be evaluated and pursued for reducing methane concentrations in the atmosphere from 1,860 ppb to preindustrial levels of ~750 ppb. Such a goal of atmospheric restoration provides a positive framework for change at a time when climate action is desperately needed.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Le Quéré, C. et al. Earth Syst. Sci. Data 10, 405–448 (2018).

  2. 2.

    van Vuuren, D. P. et al. Nat. Clim. Change 8, 391–397 (2018).

  3. 3.

    Tavoni, M. & Socolow, R. Clim. Change 118, 1–14 (2013).

  4. 4.

    Jackson, R. B. et al. Environ. Res. Lett. 12, 110201 (2017).

  5. 5.

    Etminan, M., Myhre, G., Highwood, E. J. & Shine, K. P. Geophys. Res. Lett. 43, 12614–12623 (2016).

  6. 6.

    Saunois, M. et al. Earth Syst. Sci. Data 8, 697–751 (2016).

  7. 7.

    Jackson, R. B. & Salzman, J. Issues Sci. Technol. 26, 67–76 (2010).

  8. 8.

    Boucher, O. & Folberth, G. A. Atmos. Environ. 44, 3343–3345 (2010).

  9. 9.

    Cargnello, M. et al. Science 337, 713–717 (2012).

  10. 10.

    Kim, J. et al. Nat. Commun. 4, 1694 (2013).

  11. 11.

    Snyder, B. E. R. et al. Nature 536, 317–321 (2016).

  12. 12.

    Tomkins, P., Ranocchiari, M. & van Bokhoven, J. A. Acc. Chem. Res. 50, 418–425 (2017).

  13. 13.

    Dubkov, K. A. et al. J. Mol. Catal. A. 123, 155–161 (1997).

  14. 14.

    Dinh, K. T. et al. ACS Catal. 8, 8306–8313 (2018).

  15. 15.

    Bracco, S. et al. J. Mater. Chem. A 5, 10328–10337 (2017).

  16. 16.

    de_Richter, R., Ming, T., Davies, P., Liu, W. & Caillol, S. Prog. Energy Combust. Sci. 60, 68–96 (2017).

  17. 17.

    World Energy Outlook 2017 (International Energy Agency, 2017); https://www.iea.org/weo2017/

  18. 18.

    Ming, T., de_Richter, R., Shen, S. & Caillol, S. Environ. Sci. Pollut. Res. 23, 6119–6138 (2016).

  19. 19.

    Konsolakis, M. ACS Catal. 5, 6397–6421 (2015).

  20. 20.

    Tsai, M.-L. et al. J. Am. Chem. Soc. 136, 3522–3529 (2014).

Download references

Acknowledgements

This Comment is a contribution of the Global Carbon Project (globalcarbonproject.org). We acknowledge support for general research on methane from the Gordon and Betty Moore Foundation (GBMF5439; R.B.J. and J.G.C.), the Stanford Natural Gas Initiative (R.B.J., M.C.), US National Science Foundation (CHE-1660611; E.I.S.), and the Australian National Environmental Science Program – Earth Systems and Climate Change Hub (J.G.C.). We also acknowledge H. M. Rhoda and S. Coffman for assistance with the manuscript and artwork, respectively.

Author information

Correspondence to R. B. Jackson.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark
Fig. 1: A hypothetical industrial array oxidizing CH4 to CO2.

Image by Stan Coffman