Abstract
It has been widely reported that anthropogenic warming is detectable with high confidence after the 1950s. However, current palaeoclimate records suggest an earlier onset of industrial-era warming. Here, we combine observational data, multiproxy palaeo records and climate model simulations for a formal detection and attribution study. Instead of the traditional approach to the annual mean temperature change, we focus on changes in temperature seasonality (that is, the summer-minus-winter temperature difference) from the regional to whole Northern Hemisphere scales. We show that the detectable weakening of temperature seasonality, which started synchronously over the northern mid–high latitudes since the late nineteenth century, can be attributed to anthropogenic forcing. Increased greenhouse gas concentrations are the main contributors over northern high latitudes, while sulfate aerosols are the major contributors over northern mid-latitudes. A reduction in greenhouse gas emissions and air pollution is expected to mitigate the weakening of temperature seasonality and its potential ecological effects.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
Data availability
The data that support the findings of this study are available from the corresponding author upon request.
References
IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).
Stott, P. Attribution: weather risks in a warming world. Nat. Clim. Change 5, 516–517 (2015).
Christidis, N., Stott, P. A., Brown, S., Hegerl, G. C. & Caesar, J. Detection of changes in temperature extremes during the second half of the 20th century. Geophys. Res. Lett. 32, L20716 (2005).
Hughes, L. Biological consequences of global warming: is the signal already apparent? Trends Ecol. Evol. 15, 56–61 (2000).
Fussmann, K. E., Schwarzmuller, F., Brose, U., Jousset, A. & Rall, B. C. Ecological stability in response to warming. Nat. Clim. Change 4, 206–210 (2014).
Soh, W. K. et al. A new paleo-leaf economic proxy reveals a shift in ecosystem function in response to global warming at the onset of the triassic period. Nat. Plants 3, 17104 (2017).
Wang, G. & Dillon, M. E. Recent geographic convergence in diurnal and annual temperature cycling flattens global thermal profiles. Nat. Clim. Change 4, 988–992 (2014).
Stine, A. R., Huybers, P. & Fung, I. Y. Changes in the phase of the annual cycle of surface temperature. Nature 457, 435–440 (2009).
Mann, M. E. & Park, J. Greenhouse warming and changes in the seasonal cycle of temperature: model versus observations. Geophys. Res. Lett. 23, 1111–1114 (1996).
Wallace, C. J. & Osborn, T. J. Recent and future modulation of the annual cycle. Clim. Res. 22, 1–11 (2002).
Walther, G. R. et al. Ecological responses to recent climate change. Nature 416, 389–395 (2002).
Li, Y., Huang, Y., Bergelson, J., Nordborg, M. & Borevitz, J. O. Association mapping of local climate-sensitive quantitative trait loci in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 197, 21199–21204 (2010).
Qian, C. & Zhang, X. B. Human influences on changes in the temperature seasonality in mid- to high-latitude land areas. J. Clim. 28, 5908–5921 (2015).
Ruddiman, W. F. et al. Late Holocene climate: natural or anthropogenic? Rev. Geophys. 54, 93–118 (2016).
Abram, N. J. et al. Early onset of industrial-era warming across the oceans and continents. Nature 536, 411–418 (2016).
Duan, J. et al. Weakening of annual temperature cycle over the Tibetan Plateau since the 1870s. Nat. Commun. 8, 14008 (2017).
Duan, K. Q., Thompson, L. G., Yao, T., Davis, M. E. & Mosley-Thompson, E. A 1000 year history of atmospheric sulfate concentrations in southern Asia as recorded by a Himalayan ice core. Geophys. Res. Lett. 34, L01810 (2007).
Luterbacher, J., Dietrich, D., Xoplaki, E., Grosjean, M. & Wanner, H. European seasonal and annual temperature variability, trends, and extremes since 1500. Science 303, 1499–1503 (2004).
Jones, P. D. et al. Hemispheric and large-scale land-surface air temperature variations: an extensive revision and an update to 2010. J. Geophys. Res. Atmos. 117, D05127 (2012).
Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteor. Soc. 93, 485–498 (2012).
Rangwala, I., Sinsky, E. & Miller, J. R. Amplified warming projections for high altitude regions of the northern hemisphere mid-latitudes from CMIP5 models. Environ. Res. Lett. 8, 024040 (2013).
Wang, H. J., Zeng, Q. C. & Zhang, X. H. The numerical-simulation of the climatic-change caused by CO2 doubling. Sci. China Ser. B 36, 451–462 (1993).
Shindell, D. T., Miller, R. L., Schmidt, G. A. & Pandolfo, L. Simulation of recent northern winter climate trends by greenhouse-gas forcing. Nature 399, 452–455 (1999).
Mitchell, J. F. B., Johns, T. C., Gregory, J. M. & Tett, S. F. B. Climate response to increasing levels of greenhouse gases and sulfate aerosols. Nature 376, 501–504 (1995).
Bindoff, N. L. et al. in IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 867–931 (Cambridge Univ. Press, 2013).
Smith, S. J. et al. Anthropogenic sulfur dioxide emissions: 1850–2005. Atmos. Chem. Phys. 11, 1101–1116 (2011).
Hunter, D. E., Schwartz, S. E., Wagener, R. & Benkovitz, C. M. Seasonal, latitudinal, and secular variations in temperature trend—evidence for influence of anthropogenic sulfate. Geophys. Res. Lett. 20, 2455–2458 (1993).
Meinshausen, M. et al. Historical greenhouse gas concentrations for climate modelling (CMIP6). Geosci. Model Dev. 10, 2057–2116 (2017).
Fischer, H., Wagenbach, D. & Kipfstuhl, J. Sulfate and nitrate firn concentrations on the Greenland ice sheet—2. Temporal anthropogenic deposition changes. J. Geophys. Res. Atmos. 103, 21935–21942 (1998).
Hannig, J. & Marron, J. S. Advanced distribution theory for SiZer. J. Am. Stat. Assoc. 101, 484–499 (2006).
Sato, Y. et al. Aerosol effects on cloud water amounts were successfully simulated by a global cloud-system resolving model. Nat. Commun. 9, 985 (2018).
Ribes, A., Planton, S. & Terray, L. Application of regularised optimal fingerprinting to attribution. Part I: method, properties and idealised analysis. Clim. Dynam. 41, 2817–2836 (2013).
Allen, M. R. & Stott, P. A. Estimating signal amplitudes in optimal fingerprinting, part I: theory. Clim. Dynam. 21, 477–491 (2003).
Acknowledgements
This research was supported by the National Key R&D Program of China (2016YFA0600404) and National Natural Science Foundation of China (41875113 and 41471035). P.W. was supported by the UK–China Research and Innovation Partnership Fund through the Met Office Climate Science for Service Partnership China as part of the Newton Fund. J.L. is supported by the Belmont Forum and JPI Climate Collaborative Research Action ‘INTEGRATE, an integrated data-model study of interactions between tropical monsoons and extratropical climate variability and extremes’. A.S. and G.H. were supported by the ERC-funded project TITAN (EC-320691), and NERC under the Belmont forum grant PacMedy (NE/P006752/1). J.D. acknowledges support from the Alexander von Humboldt Foundation. We are very grateful to K. Duan and H. Fischer for making their ice-core sulfate concentrations data available. We also thank A. Ribes for comments on the early manuscript.
Author information
Authors and Affiliations
Contributions
J.D. designed the study and performed the analyses, with support from Z.M., L.L., P.W., J.L. and E.X. J.D. drafted and revised the manuscript with input from P.W., J.L., A.S., G.H., D.G. and E.X. Y.D. and L.C. improved the figures. All authors contributed to interpreting the results and discussions.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary information
Supplementary Figs. 1–12, Supplementary Tables 1–2
Rights and permissions
About this article
Cite this article
Duan, J., Ma, Z., Wu, P. et al. Detection of human influences on temperature seasonality from the nineteenth century. Nat Sustain 2, 484–490 (2019). https://doi.org/10.1038/s41893-019-0276-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41893-019-0276-4
This article is cited by
-
Recent Progress in Studies on the Influences of Human Activity on Regional Climate over China
Advances in Atmospheric Sciences (2023)
-
The performance of CMIP6 models in describing the temperature annual cycle in China from 1961 to 2014
Theoretical and Applied Climatology (2023)
-
Recent weakening of seasonal temperature difference in East Asia beyond the historical range of variability since the 14th century
Science China Earth Sciences (2023)
-
Tree-ring-based winter temperature reconstruction for East Asia over the past 700 years
Science China Earth Sciences (2021)
-
A Mobile Vehicle-Based Methodology for Dynamic Microclimate Analysis
International Journal of Environmental Research (2021)