Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

The impact of nutrient-rich food choices on agricultural water-use efficiency

Abstract

When distributed equally, the total amount of food produced worldwide could sufficiently meet current global demand. Still, malnutrition in the form of nutrient deficiencies continues to prevail in both low- and high-income countries. At the same time, natural resource use for agriculture is reaching or exceeding environmental boundaries. By integrating a comprehensive micronutrient scoring method with data on agricultural water demand, this analysis aims to re-evaluate the global water-use efficiency of dietary nutrient production. A stronger reliance on more nutrient-dense foods could lead to higher water-use efficiencies, though dietary water footprints were likely to increase overall. With a more detailed focus on plant and animal foods, we find that most dietary protein sources show comparable water-use efficiencies, and thus can be drivers for agricultural water demand. Animal foods, besides having a unique nutrient profile, often do not compete directly with crops for the same water resources. However, a significant reduction in the demand for utilizable freshwater resources could be achieved by reducing the amount of feed crops in ruminant diets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: NCS for 24 food groups.
Fig. 2: Global average water-use efficiency per litre net water use.
Fig. 3: Micronutrient content and water demand per gram of protein.
Fig. 4: Comparing global water demands for major dietary protein sources.
Fig. 5: Water footprint of 24 main food groups.

Similar content being viewed by others

Data availability

The data generated from this analysis are included in this published article and its Supplementary information. Additional data from the Supplementary Information are available from the corresponding author upon reasonable request.

References

  1. Global Physical and Economic Surface Water Scarcity Map (International Water Management Institute, 2015); http://waterdata.iwmi.org/Applications/Water_Scarcity_Map/

  2. Water Information and Statistics (Food and Agriculture Organization of the United Nations, 2016); http://www.fao.org/nr/water/aquastat/main/index.stm

  3. Wood, A. S. et al. Trade and the equitability of global food nutrient distribution. Nat. Sustain 1, 34–37 (2018).

    Article  Google Scholar 

  4. Kumssa, D. B. et al. Dietary calcium and zinc deficiency risks are decreasing but remain prevalent. Sci. Rep. 5, 10974 (2015).

    Article  Google Scholar 

  5. Araujo, M. C. et al. Macronutrient consumption and inadequate micronutrient intake in adults. Rev. Saude Publica 47(suppl. 1), 177s–189s (2013).

    Article  Google Scholar 

  6. Caulfield, L. E. et al. in Disease Control Priorities in Developing Countries 2nd edn (eds Jamison D. T. et al.) (The International Bank for Reconstruction and Development/The World Bank, Washington, DC, and Oxford Univ. Press, New York, 2006).

  7. Kaganov, B., Caroli, M., Mazur, A., Singhal, A. & Vania, A. Suboptimal micronutrient intake among children in Europe. Nutrients 7, 3524–3535 (2015).

    Article  CAS  Google Scholar 

  8. Moshfegh, A., Goldman, J. & Cleveland, L. What We Eat in America, NHANES 2001–2002: Usual Nutrient Intakes From Food Compared to Dietary Reference Intakes (US Department of Agriculture, Agricultural Research Service, 2005); https://www.ars.usda.gov/ARSUserFiles/80400530/pdf/0102/usualintaketables2001-02.pdf

  9. Thomson, C. A. et al. Nutrient intake and anemia risk in the Women’s Health Initiative observational study. J. Am. Diet Assoc. 111, 532–541 (2011).

    Article  CAS  Google Scholar 

  10. Ames, B. N. Low micronutrient intake may accelerate the degenerative diseases of aging through allocation of scarce micronutrients by triage. Proc. Natl Acad. Sci. USA 103, 17589–17594 (2006).

    Article  CAS  Google Scholar 

  11. Osimani, A., Berger, A., Friedman, J., Porat-Katz, B. S. & Abarbanel, J. M. Neuropsychology of vitamin B12 deficiency in elderly dementia patients and control subjects. J. Geriatr. Psychiatry Neurol. 18, 33–38 (2005).

    Article  Google Scholar 

  12. Zimmermann, M. B. & Köhrle, J. The impact of iron and selenium deficiencies on iodine and thyroid metabolism: biochemistry and relevance to public health. Thyroid 10, 867–878 (2002).

    Article  Google Scholar 

  13. The Green, Blue and Grey Water Footprint of Farm Animals and Animal Products. Value of Water Research Report Series No 48 (UNESCO-IHE Institute for Water Education, 2010).

  14. Rockström, J., Lannerstad, M. & Falkenmark, M. Assessing the water challenge of a new green revolution in developing countries. Proc. Natl Acad. Sci. USA 104, 6253–6260 (2007).

    Article  Google Scholar 

  15. Gerten, D. et al. Global water availability and requirements for future food production. J. Hydrometeorol. 12, 885–899 (2011).

    Article  Google Scholar 

  16. WATERSIM. CPSP Report 12 (International Water Management Institute, 2005).

  17. Rockström, J. et al. Future water availability for global food production: the potential of green water for increasing resilience to global change. Water Resour. Res. 45, W00A12 (2009).

    Article  Google Scholar 

  18. Yang, H., Liu, J. G. & Folberth C. In Proc. MODSIM2011 19th International Congress on Modelling and Simulation (eds Chan, F. et al.) 3671–3677 (Modelling and Simulation Society of Australia and New Zealand, 2011).

  19. Chartres, S. & Sood, A. The water for food paradox. Aquat. Procedia 1, 3–19 (2013).

    Article  Google Scholar 

  20. Hoekstra, A. Y. & Mekonnen, M. M. The water footprint of humanity. Proc. Natl Acad. Sci. USA 109, 3232–3237 (2012).

    Article  CAS  Google Scholar 

  21. Eshel, G., Shepon, A., Makov, T. & Milo, R. Land, irrigation water, greenhouse gas, and reactive nitrogen burdens of meat, eggs, and dairy production in the United States. Proc. Natl Acad. Sci. USA 111, 11996–12001 (2014).

    Article  CAS  Google Scholar 

  22. Tom, M. S., Fischbeck, P. S. & Hendrickson, C. T. Energy use, blue water footprint, and greenhouse gas emissions for current food consumption patterns and dietary recommendations in the US. Environ. Syst. Decis. 36, 92–103 (2016).

    Article  Google Scholar 

  23. Downs, S. M. & Fanzo, J. Is a cardio-protective diet sustainable? A review of the synergies and tensions between foods that promote the health of the heart and the planet. Curr. Nutr. Rep. 4, 313–322 (2015).

    Article  CAS  Google Scholar 

  24. Masset, G., Soler, L. G., Vieux, F. & Darmon, N. Identifying sustainable foods: the relationship between environmental impact, nutritional quality, and prices of foods representative of the French diet.J. Acad. Nutr. Diet. 114, 862–869 (2014).

    Article  Google Scholar 

  25. Ernstoff A. et al. In Proc. 9th International Conference on Life Cycle Assessment in the Agri-Food Sector (eds Schenck, R. & Huizenga, D.) 339–347 (ACLCA, 2014).

  26. Smedman, A., Lindmark-Månsson, H., Drewnowski, A. & Edman, A. K. Nutrient density of beverages in relation to climate impact. Food Nutr. Res. 54, 5170 (2010).

    Article  Google Scholar 

  27. Kendall, A. & Brodt S. B. In Proc. 9th International Conference on Life Cycle Assessment in the Agri-Food Sector (eds Schenck, R. & Huizenga, D) 628–633 (ACLCA, 2014).

  28. Doran-Browne, N. A., Eckard, R. J., Behrendt, R. & Kingwell, R. S. Nutrient density as a metric for comparing greenhouse gas emissions from food production. Clim. Change 129, 73–87 (2015).

    Article  CAS  Google Scholar 

  29. Jayathilakan, K., Sultana, K., Radhakrishna, K. & Bawa, A. S. Utilization of byproducts and waste materials from meat, poultry and fish processing industries: a review. J. Food Sci. Technol. 49, 278–293 (2012).

    Article  CAS  Google Scholar 

  30. Herrero, M. et al. Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems. Proc. Natl Acad. Sci. USA 110, 20888–20893 (2013).

    Article  CAS  Google Scholar 

  31. Mottet, A. et al. Livestock: on our plates or eating at our table? A new analysis of the feed/food debate. Glob. Food Sec. 14, 1–8 (2017).

    Article  Google Scholar 

  32. Gustavsson, J., Cederberg, C., Sonesson, U., van Otterdijk, R. & Meybeck, A. Global Food Losses and Food Waste: Extent, Causes and Prevention (FAO, Rome, 2011).

    Google Scholar 

  33. Ercin, A. E. & Hoekstra, A. Y. Water footprint scenarios for 2050: a global analysis. Environ. Int. 64, 71–82 (2014).

    Article  Google Scholar 

  34. Jalava, M., Kummu, M., Porkka, M., Varis, O. & Siebert, S. Diet change: a solution to reduce water use? Environ. Res. Lett. 9, 074016 (2014).

    Article  Google Scholar 

  35. Hunt, J. R. Bioavailability of iron, zinc, and other trace minerals from vegetarian diets. Am. J. Clin. Nutr. 78, 633S–639S (2003).

    Article  CAS  Google Scholar 

  36. Kumar, J. et al. Vitamin B12 deficiency is associated with coronary artery disease in an Indian population. Clin. Chem. Lab. Med. 47, 334–338 (2009).

    Article  CAS  Google Scholar 

  37. Herrmann, W. et al. Vitamin B-12 status, particularly holotranscobalamin II and methylmalonic acid concentrations, and hyperhomocysteinemia in vegetarians. Am. J. Clin. Nutr. 78, 131–136 (2003).

    Article  CAS  Google Scholar 

  38. Egounlety, M. & Aworh, O. C. Effect of soaking, dehulling, cooking and fermentation with Rhizopus oligosporus on the oligosaccharides, trypsin inhibitor, phytic acid and tannins of soybean (Glycine max Merr.), cowpea (Vigna unguiculata L. Walp) and groundbean (Macrotyloma geocarpa Harms). J. Food Eng. 56, 249–254 (2003).

    Article  Google Scholar 

  39. Doerge, D. R. & Sheehan, D. M. Goitrogenic and estrogenic activity of soy isoflavones. Environ. Health Perspect. 110, 349–353 (2002).

    Article  CAS  Google Scholar 

  40. Wu, S. J., Pan, W. H., Yeh, N. H. & Chang, H. Y. Trends in nutrient and dietary intake among adults and the elderly: from NAHSIT 1993–1996 to 2005–2008. Asia Pac. J. Clin. Nutr. 20, 251–265 (2011).

    Google Scholar 

  41. Mekonnen, M. M. & Hoekstra, A. Y. The green, blue and grey water footprint of crops and derived crop products. Hydrol. Earth Syst. Sci. 5, 1577–1600 (2011).

    Article  Google Scholar 

  42. Mekonnen, M. M. & Hoekstra, A. Y. A global assessment of the water footprint of farm animal products. Ecosystems 15, 401–415 (2012).

    Article  CAS  Google Scholar 

  43. Hoekstra, A. Y. & Hung, P. Q. Globalisation of water resources: international virtual water flows in relation to crop trade. Glob. Environ. Change 15, 45–56 (2005).

    Article  Google Scholar 

  44. Dalin, C., Wada, Y., Kastner, T. & Puma, M. J. Groundwater depletion embedded in international food trade. Nature 543, 700–7004 (2017).

    Article  CAS  Google Scholar 

  45. Hanasaki, N. et al. A global water scarcity assessment under shared socio-economic pathways: part 2: water availability and scarcity. Hydrol. Earth Syst. Sci. 17, 2393–2413 (2013).

    Article  Google Scholar 

  46. Verdegem, M. C. J., Bosma, R. H. & Verreth, J. A. J. Reducing water use for animal production through aquaculture. Int. J. Water Resour. Dev. 22, 101–113 (2006).

    Article  Google Scholar 

  47. USDA National Nutrient Database for Standard Reference Release 28 (United States Department of Agriculture Agricultural Research Service, accessed 3 February 2019); https://ndb.nal.usda.gov/ndb/

  48. Longvah, T., Anantan, I., Bhaskarachary, K. & Venkaiah, K. Indian Food Composition Tables (National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, 2017).

  49. USDA Table of Nutrient Retention Factors Release 6 (US Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Nutrient Data Laboratory, 2007); https://www.ars.usda.gov/ARSUserFiles/80400525/Data/retn/retn06.pdf

  50. Drewnoski, A. Concept of a nutritious food: toward a nutrient density score. Am. J. Clin. Nutr. 82, 721–732 (2005).

    Article  Google Scholar 

  51. Drewnoski, A. & Fuloni, V. III Nutrient profiling of foods: creating a nutrient-rich food index. Nutr. Rev. 66, 23–39 (2008).

    Article  Google Scholar 

  52. Schleicher, R. L., Carroll, M. D., Ford, E. S. & Lacher, D. A. Serum vitamin C and the prevalence of vitamin C deficiency in the United States: 2003–2004 National Health and Nutrition Examination Survey (NHANES). Am. J. Clin. Nutr. 90, 1252–1263 (2009).

    Article  CAS  Google Scholar 

  53. McBride J. Are You Vitamin B 12 Deficient? (USDA ARS, 2000); https://agresearchmag.ars.usda.gov/ar/archive/2000/aug/vita0800.pdf

  54. Van Immerseel, F. et al. Butyric acid-producing anaerobic bacteria as a novel probiotic treatment approach for inflammatory bowel disease. J. Med. Microbiol. 59, 141–143 (2010).

    Article  Google Scholar 

  55. Mozzafarian, D. Saturated fatty acids and type 2 diabetes: more evidence to re-invent dietary guidelines. Lancet Diabetes Endocrinol. 2, 770–772 (2014).

    Article  Google Scholar 

  56. National Research Council, Subcommittee on the Tenth Edition of the Recommended Dietary Allowances. Recommended Dietary Allowances (National Academies Press, Washington DC, 1989).

  57. European Food Safety Authority (EFSA). Scientific opinion on dietary reference values for cobalamin (vitamin B12). EFSA J. 13, 4150 (2015).

    Google Scholar 

  58. Petry, N., Egli, I, Zeder, C., Walczyk, T. & Hurrell, R. Polyphenols and phytic acid contribute to the low iron bioavailability from common beans in young women. J. Nutr. 140, 1977–1982 (2010).

    Article  CAS  Google Scholar 

  59. Schlemmer, U., Frølich, W., Prieto, R. M. & Grases, F. Phytate in foods and significance for humans: food sources, intake, processing, bioavailability, protective role and analysis. Mol. Nutr. Food Res. 53, S330–S375 (2009).

    Article  Google Scholar 

  60. Sandberg, A. S. Bioavailability of minerals in legumes. Br. J. Nutr. 88, S281–S285 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank M. Mekonnen (University of Nebraska) for his support with this analysis. The authors would like to acknowledge financial support from the CSIRO Science Leaders Programme.

Author information

Authors and Affiliations

Authors

Contributions

K.D. and M.H. conceived the project. K.D. developed the analysis approach. K.W., M.H. and K.D. contributed to the study outline. K.D. wrote the paper.

Corresponding author

Correspondence to Kerstin Damerau.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–6, Supplementary References 1–13

Supplementary Tables

Supplementary Tables 1–4

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Damerau, K., Waha, K. & Herrero, M. The impact of nutrient-rich food choices on agricultural water-use efficiency. Nat Sustain 2, 233–241 (2019). https://doi.org/10.1038/s41893-019-0242-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41893-019-0242-1

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene