Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Actors’ diversity and the resilience of social-ecological systems to global change


Biological diversity is known to enhance the resilience of ecosystems to environmental change. It is, however, unclear whether a high diversity of social actors analogously increases the capacity of social-ecological systems to maintain the provision of ecosystem services while undergoing socio-economic and climate changes. Here, using an empirically informed agent-based modelling approach, we demonstrate that both the number of actors (actors richness) and the diversity of the abilities and skills that characterize their management capabilities (actors’ functional diversity) are key determinants of the resilience of social-ecological systems to global change. A high complementarity of the actors’ functional diversity helps to buffer vulnerable mountain systems against socio-economic and climate change. Actors’ response diversity can mediate an abrupt shift in the social-ecological system, leading to new trade-offs in ecosystem services. Our results highlight the importance of considering both the diversity and the complementarity of actors’ management capabilities to ensure the provision of ecosystem services in the face of uncertain global change.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Actors’ functional richness and actors richness highly correlate with the flow of demanded ecosystem services.
Fig. 2: Socio-economic and climatic presses and pulses impact actors’ functional divergence and provision of ecosystem services.
Fig. 3: Relationship between presses and pulses and response diversity.

Data availability

The data used for this study and the ALUAM agent-based model code35 are available in the ETH Research Collection with the identifier


  1. 1.

    Oliver, T. H. et al. Biodiversity and resilience of ecosystem functions. Trends Ecol. Evol. 30, 673–684 (2015).

    Article  Google Scholar 

  2. 2.

    Tilman, D., Reich, P. B. & Knops, J. M. H. Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature 441, 629–632 (2006).

    CAS  Article  Google Scholar 

  3. 3.

    Naeem, S., Chazdon, R., Duffy, J. E., Prager, C. & Worm, B. Biodiversity and human well-being: an essential link for sustainable development. Proc. R. Soc. Lond. B 283, 20162091 (2016).

  4. 4.

    Mori, A. S., Furukawa, T. & Sasaki, T. Response diversity determines the resilience of ecosystems to environmental change. Biol. Rev. 88, 349–364 (2013).

    Article  Google Scholar 

  5. 5.

    Diaz, S. & Cabido, M. Vive la difference: plant functional diversity matters to ecosystem processes. Trends Ecol. Evol. 16, 646–655 (2001).

    Article  Google Scholar 

  6. 6.

    Hooper, D. U. et al. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol. Monogr. 75, 3–35 (2005).

    Article  Google Scholar 

  7. 7.

    Ostrom, E. Understanding Institutional Diversity (Princeton Univ. Press, 2005).

  8. 8.

    Smith, A. & Stirling, A. The politics of social-ecological resilience and sustainable socio-technical transitions. Ecol. Soc. 15, 11 (2010).

  9. 9.

    Chapin, F. S., Folke, C. & Kofinas, G. P. Principles of Ecosystem Stewardship: Resilience-Based Natural Resource Management in a Changing World (Springer, 2009).

  10. 10.

    Scheffer, M., Carpenter, S., Foley, J. A., Folke, C. & Walker, B. Catastrophic shifts in ecosystems. Nature 413, 591–596 (2001).

    CAS  Article  Google Scholar 

  11. 11.

    Folke, C., Hahn, T., Olsson, P. & Norberg, J. Adaptive governance of social-ecological systems. Annu. Rev. Environ. Resour. 30, 441–473 (2005).

    Article  Google Scholar 

  12. 12.

    Adger, W. N. Social and ecological resilience: are they related? Prog. Hum. Geogr. 24, 347–364 (2000).

    Article  Google Scholar 

  13. 13.

    Gunderson, L. H. & Holling, C. Panarchy: Understanding Transformations in Human and Natural Systems (Island, 2002).

  14. 14.

    Centola, D. & Macy, M. Complex contagions and the weakness of long ties. Am. J. Sociol. 113, 702–734 (2007).

    Article  Google Scholar 

  15. 15.

    Padgett, J. F. & Powell, W. W. The Emergence of Organizations and Markets (Princeton Univ. Press, 2012).

  16. 16.

    Vriend, N. J. An illustration of the essential difference between individual and social learning, and its consequences for computational analyses. J. Econ. Dynam. Control 24, 1–19 (2000).

    Article  Google Scholar 

  17. 17.

    Golman, R. & Page, S. E. Basins of attraction and equilibrium selection under different learning rules. J. Evol. Econ. 20, 49 (2010).

    Article  Google Scholar 

  18. 18.

    DeLanda, M. A New Philosophy of Society: Assemblage Theory and Social Complexity (Continuum, 2006).

  19. 19.

    Biggs, R., Schlüter, M. & Schoon, M. L. Principles for Building Resilience: Sustaining Ecosystem Services in Social-Ecological Systems (Cambridge Univ. Press, 2015).

  20. 20.

    Quinlan, A. E., Berbés‐Blázquez, M., Haider, L. J. & Peterson, G. D. Measuring and assessing resilience: broadening understanding through multiple disciplinary perspectives. J. Appl. Ecol. 53, 677–687 (2016).

    Article  Google Scholar 

  21. 21.

    Page, S. E. The Difference: How the Power of Diversity Creates Better Groups, Firms, Schools, and Societies (Princeton Univ. Press, 2008).

  22. 22.

    Díaz, S. et al. Linking functional diversity and social actor strategies in a framework for interdisciplinary analysis of nature’s benefits to society. Proc. Natl Acad. Sci. USA 108, 895–902 (2011).

  23. 23.

    Walker, B. et al. A handful of heuristics and some propositions for understanding resilience in social-ecological systems. Ecol. Soc. 11, 13 (2006).

  24. 24.

    Mountain Research Initiative EDW Working Group Elevation-dependent warming in mountain regions of the world. Nat. Clim. Change 5, 424–430 (2015).

  25. 25.

    Locatelli, B., Lavorel, S., Sloan, S., Tappeiner, U. & Geneletti, D. Characteristic trajectories of ecosystem services in mountains. Front. Ecol. Environ. 15, 150–159 (2017).

    Article  Google Scholar 

  26. 26.

    Alessa, L., Kliskey, A., Gosz, J., Griffith, D. & Ziegler, A. MtnSEON and social-ecological systems science in complex mountain landscapes. Front. Ecol. Environ. 16, S4–S10 (2018).

  27. 27.

    Körner, C. & Oshawa, M. in Ecosystems and Human Well-being: Current State and Trends (eds Hassan, R., Scholes R. & Ash, N.) Ch. 24 (Island, 2005).

  28. 28.

    Filatova, T., Polhill, J. G. & van Ewijk, S. Regime shifts in coupled socio-environmental systems: review of modelling challenges and approaches. Environ. Model. Softw. 75, 333–347 (2016).

    Article  Google Scholar 

  29. 29.

    Verburg, P. H. et al. Methods and approaches to modelling the Anthropocene. Glob. Environ. Change 39, 328–340 (2016).

    Article  Google Scholar 

  30. 30.

    Egli, L., Weise, H., Radchuk, V., Seppelt, R. & Grimm, V. Exploring resilience with agent-based models: state of the art, knowledge gaps and recommendations for coping with multidimensionality. Ecol. Complex. (2018).

  31. 31.

    Arneth, A., Brown, C. & Rounsevell, M. Global models of human decision-making for land-based mitigation and adaptation assessment. Nat. Clim. Change 4, 550–557 (2014).

    Article  Google Scholar 

  32. 32.

    An, L. Modeling human decisions in coupled human and natural systems: review of agent-based models. Ecol. Model. 229, 25–36 (2012).

    Article  Google Scholar 

  33. 33.

    Filatova, T., Verburg, P. H., Parker, D. C. & Stannard, C. A. Spatial agent-based models for socio-ecological systems: challenges and prospects. Environ. Model. Softw. 45, 1–7 (2013).

    Article  Google Scholar 

  34. 34.

    Walker, B., Hollin, C. S., Carpenter, S. R. & Kinzig, A. Resilience, adaptability and transformability in social-ecological systems. Ecol. Soc. 9, 5 (2004).

    Article  Google Scholar 

  35. 35.

    Huber, R., Brunner, S., Peter, S. & Briner, S. Alpine Land-Use Allocation Model (ALUAM) (ETH Zürich, 2007);

  36. 36.

    Huber, R., Bugmann, H., Buttler, A. & Rigling, A. Sustainable land-use practices in European mountain regions under global change: an integrated research approach. Ecol. Soc. 18, 36 (2013).

  37. 37.

    Harris, R. et al. Biological responses to the press and pulse of climate trends and extreme events. Nat. Clim. Change 8, 579–587 (2018).

    Article  Google Scholar 

  38. 38.

    Janssen, M. A., Anderies, J. M. & Ostrom, E. Robustness of social-ecological systems to spatial and temporal variability. Soc. Nat. Resour. 20, 307–322 (2007).

    Article  Google Scholar 

  39. 39.

    Kinzig, A. P., Pacala, S. W. & Tilman, D. The Functional Consequences of Biodiversity: Empirical Progress and Theoretical Extensions (Princeton Univ. Press, 2001).

  40. 40.

    Petchey, O. L. & Gaston, K. J. Functional diversity (FD), species richness and community composition. Ecol. Lett. 5, 402–411 (2002).

    Article  Google Scholar 

  41. 41.

    Rougoor, C. W., Trip, G., Huirne, R. B. & Renkema, J. A. How to define and study farmers’ management capacity: theory and use in agricultural economics. Agric. Econ. 18, 261–272 (1998).

    Article  Google Scholar 

  42. 42.

    Lavorel, S. et al. Using plant functional traits to understand the landscape distribution of multiple ecosystem services. J. Ecol. 99, 135–147 (2011).

    Article  Google Scholar 

  43. 43.

    Botta‐Dukát, Z. Rao’s quadratic entropy as a measure of functional diversity based on multiple traits. J. Veg. Sci. 16, 533–540 (2005).

    Article  Google Scholar 

  44. 44.

    Göthe, E., Sandin, L., Allen, C. R. & Angeler, D. G. Quantifying spatial scaling patterns and their local and regional correlates in headwater streams: implications for resilience. Ecol. Soc. 19, 15 (2014).

  45. 45.

    Fischer, J. et al. Functional richness and relative resilience of bird communities in regions with different land use intensities. Ecosystems 10, 964–974 (2007).

    Article  Google Scholar 

  46. 46.

    Angeler, D. G., Allen, C. R. & Johnson, R. K. Measuring the relative resilience of subarctic lakes to global change: redundancies of functions within and across temporal scales. J. Appl. Ecol. 50, 572–584 (2013).

    Article  Google Scholar 

  47. 47.

    Burrows, R. C., Wancio, D., Levitt, P. & Lillien, L. Response diversity and the timing of progenitor cell maturation are regulated by developmental changes in EGFR expression in the cortex. Neuron 19, 251–267 (1997).

    CAS  Article  Google Scholar 

  48. 48.

    Carpenter, S. R. et al. Early warnings of regime shifts: a whole-ecosystem experiment. Science 332, 1079–1082 (2011).

    CAS  Article  Google Scholar 

  49. 49.

    Luthe, T. & Wyss, R. Introducing adaptive waves as a concept to inform mental models of resilience. Sustain. Sci. 10, 673–685 (2015).

    Article  Google Scholar 

  50. 50.

    Folke, C. Resilience: the emergence of a perspective for social-ecological systems analyses. Glob. Environ. Change 16, 253–267 (2006).

    Article  Google Scholar 

  51. 51.

    Brunner, S. H. & Grêt-Regamey, A. Policy strategies to foster the resilience of mountain social-ecological systems under uncertain global change. Environ. Sci. Policy 66, 129–139 (2016).

    Article  Google Scholar 

  52. 52.

    Schermer, M. et al. Institutional impacts on the resilience of mountain grasslands: an analysis based on three European case studies. Land Use Policy 52, 382–391 (2016).

    Article  Google Scholar 

  53. 53.

    Chapin, S. H.III et al. Ecosystem stewardship: sustainability strategies for a rapidly changing planet. Trends Ecol. Evol. 25, 241–249 (2010).

    Article  Google Scholar 

  54. 54.

    Meyfroidt, P., Lambin, E. F., Erb, K.-H. & Hertel, T. W. Globalization of land use: distant drivers of land change and geographic displacement of land use. Curr. Opin. Environ. Sustain. 5, 438–444 (2013).

    Article  Google Scholar 

  55. 55.

    Schirpke, U. et al. Future impacts of changing land-use and climate on ecosystem services of mountain grassland and their resilience. Ecosyst. Serv. 26, 79–94 (2017).

    Article  Google Scholar 

  56. 56.

    Lavorel, S. et al. Historical trajectories in land use pattern and grassland ecosystem services in two European alpine landscapes. Reg. Environ. Change 17, 2251–2264 (2017).

    Article  Google Scholar 

  57. 57.

    Bender, O. & Kanitscheider, S. New immigration into the European Alps: emerging research issues. Mt. Res. Dev. 32, 235–241 (2012).

    Article  Google Scholar 

  58. 58.

    Grêt-Regamey, A. et al. On the effects of scale for ecosystem services mapping. PLoS ONE 9, e112601 (2014).

    Article  Google Scholar 

  59. 59.

    Crouzat, E. et al. Assessing bundles of ecosystem services from regional to landscape scale: insights from the French Alps. J. Appl. Ecol. 52, 1145–1155 (2015).

    Article  Google Scholar 

  60. 60.

    Grêt-Regamey, A., Bebi, P., Bishop, I. D. & Schmid, W. A. Linking GIS-based models to value ecosystem services in an Alpine region. J. Environ. Manage. 89, 197–208 (2008).

    Article  Google Scholar 

  61. 61.

    Navarro, L. M. & Pereira, H. M. in Rewilding European Landscapes 3–23 (Springer, 2015).

  62. 62.

    Lamarque, P., Lavorel, S., Mouchet, M. & Quétier, F. Plant trait-based models identify direct and indirect effects of climate change on bundles of grassland ecosystem services. Proc. Natl Acad. Sci. USA 111, 13751–13756 (2014).

    CAS  Article  Google Scholar 

  63. 63.

    Bürgi, M., Silbernagel, J., Wu, J. & Kienast, F. Linking ecosystem services with landscape history. Landsc. Ecol. 30, 11–20 (2015).

    Article  Google Scholar 

  64. 64.

    Schirpke, U., Timmermann, F., Tappeiner, U. & Tasser, E. Cultural ecosystem services of mountain regions: modelling the aesthetic value. Ecol. Indic. 69, 78–90 (2016).

    Article  Google Scholar 

  65. 65.

    Lamarque, P. et al. Stakeholder perceptions of grassland ecosystem services in relation to knowledge on soil fertility and biodiversity. Reg. Environ. Change 11, 791–804 (2011).

    Article  Google Scholar 

  66. 66.

    Scherrer, D. & Körner, C. Topographically controlled thermal‐habitat differentiation buffers alpine plant diversity against climate warming. J. Biogeogr. 38, 406–416 (2011).

    Article  Google Scholar 

  67. 67.

    Levers, C. et al. Archetypical patterns and trajectories of land systems in Europe. Reg. Environ. Change 18, 715–732 (2018).

    Article  Google Scholar 

  68. 68.

    Nagler, M. et al. Different management of larch grasslands in the European Alps shows low impact on above-and belowground carbon stocks. Agric. Ecosyst. Environ. 213, 186–193 (2015).

    Article  Google Scholar 

  69. 69.

    Brunner, S. H., Huber, R. & Grêt-Regamey, A. A backcasting approach for matching regional ecosystem services supply and demand. Environ. Model. Softw. 75, 439–458 (2016).

    Article  Google Scholar 

  70. 70.

    Chételat, J. et al. A contextual analysis of land-use and vegetation changes in two wooded pastures in the Swiss Jura Mountains. Ecol. Soc. 18, 39 (2013).

  71. 71.

    Grimm, V. et al. The ODD protocol: a review and first update. Ecol. Model. 221, 2760–2768 (2010).

    Article  Google Scholar 

  72. 72.

    Huber, R. et al. Modeling social-ecological feedback effects in the implementation of payments for environmental services in pasture-woodlands. Ecol. Soc. 18, 41 (2013).

  73. 73.

    Brändle, J. M., Langendijk, G., Peter, S., Brunner, S. H. & Huber, R. Sensitivity analysis of a land-use change model with and without agents to assess land abandonment and long-term re-forestation in a swiss mountain region. Land 4, 475–512 (2015).

    Article  Google Scholar 

  74. 74.

    Schumacher, S. & Bugmann, H. The relative importance of climatic effects, wildfires and management for future forest landscape dynamics in the Swiss Alps. Glob. Change Biol. 12, 1435–1450 (2006).

    Article  Google Scholar 

  75. 75.

    Huber, R. et al. Inter- and transdisciplinary perspective on the integration of ecological processes into ecosystem services analysis in a mountain region. Ecol. Process. 3, 9 (2014).

    Article  Google Scholar 

  76. 76.

    Briner, S., Elkin, C., Huber, R. & Grêt-Regamey, A. Assessing the impacts of economic and climate changes on land-use in mountain regions: a spatial dynamic modeling approach. Agric. Ecosyst. Environ. 149, 50–63 (2012).

    Article  Google Scholar 

  77. 77.

    Huber, R. et al. Interaction effects of targeted agri-environmental payments on non-marketed goods and services under climate change in a mountain region. Land Use Policy 66, 49–60 (2017).

    Article  Google Scholar 

  78. 78.

    Hyndman, R. J. Another look at forecast-accuracy metrics for intermittent demand. Foresight 4, 43–46 (2006).

    Google Scholar 

  79. 79.

    Walz, A. et al. Experience from downscaling IPCC-SRES scenarios to specific national-level focus scenarios for ecosystem service management. Technol. Forecast. Soc. Change 86, 21–32 (2014).

    Article  Google Scholar 

  80. 80.

    Grêt-Regamey, A. et al. On the importance of non-linear relationships between landscape patterns and the sustainable provision of ecosystem services. Landsc. Ecol. 29, 201–212 (2014).

    Article  Google Scholar 

  81. 81.

    Rewitzer, S., Huber, R., Grêt-Regamey, A. & Barkmann, J. Economic valuation of cultural ecosystem service changes to a landscape in the Swiss Alps. Ecol. Serv. 26, 197–208 (2017).

    Article  Google Scholar 

  82. 82.

    Cadotte, M. W., Cardinale, B. J. & Oakley, T. H. Evolutionary history and the effect of biodiversity on plant productivity. Proc. Natl Acad. Sci. USA 105, 17012–17017 (2008).

    CAS  Article  Google Scholar 

  83. 83.

    Hillebrand, H. & Matthiessen, B. Biodiversity in a complex world: consolidation and progress in functional biodiversity research. Ecol. Lett. 12, 1405–1419 (2009).

    Article  Google Scholar 

  84. 84.

    Díaz, S. et al. Functional traits, the phylogeny of function, and ecosystem service vulnerability. Ecol. Evol. 3, 2958–2975 (2013).

    Article  Google Scholar 

  85. 85.

    Spellerberg, I. F. & Fedor, P. J. A tribute to Claude Shannon (1916–2001) and a plea for more rigorous use of species richness, species diversity and the ‘Shannon–Wiener index. Glob. Ecol. Biogeogr. 12, 177–179 (2003).

    Article  Google Scholar 

  86. 86.

    Villéger, S., Mason, N. W. & Mouillot, D. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89, 2290–2301 (2008).

    Article  Google Scholar 

  87. 87.

    Mouchet, M. A., Villéger, S., Mason, N. W. & Mouillot, D. Functional diversity measures: an overview of their redundancy and their ability to discriminate community assembly rules. Funct. Ecol. 24, 867–876 (2010).

    Article  Google Scholar 

  88. 88.

    Gower, J. C. A general coefficient of similarity and some of its properties. Biometrics 27, 857–871 (1971).

  89. 89.

    Rao, C. R. Diversity and dissimilarity coefficients: a unified approach. Theor. Popul. Biol. 21, 24–43 (1982).

    Article  Google Scholar 

  90. 90.

    Casanoves, F., Pla, L., Di Rienzo, J. A. & Díaz, S. FDiversity: a software package for the integrated analysis of functional diversity. Methods Ecol. Evol. 2, 233–237 (2011).

    Article  Google Scholar 

Download references


This work was supported by the Competence Centre Environment and Sustainability of the ETH Domain, Switzerland, and the project “MntPaths – Pathways for global change adaptation of mountain socio-ecological systems”, grant no. 20521L_169916, funded by the Swiss National Science Foundation. We acknowledge the work of all researchers involved in the inter- and transdisciplinary research project MOUNTLAND, which provided input to this study. We thank R. Sonderegger for his graphical support, U. Fink for proofreading and B. Weibel for editorial support and proofreading.

Author information




A.G.-R. designed the research and wrote the manuscript. S.H.H. and R.H. reviewed the literature, performed the simulation runs, analysed the data and edited the paper.

Corresponding author

Correspondence to Adrienne Grêt-Regamey.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–3, Supplementary Tables 1–4, Supplementary References 1–5

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Grêt-Regamey, A., Huber, S.H. & Huber, R. Actors’ diversity and the resilience of social-ecological systems to global change. Nat Sustain 2, 290–297 (2019).

Download citation

Further reading


Quick links