Abstract
Biological diversity is known to enhance the resilience of ecosystems to environmental change. It is, however, unclear whether a high diversity of social actors analogously increases the capacity of social-ecological systems to maintain the provision of ecosystem services while undergoing socio-economic and climate changes. Here, using an empirically informed agent-based modelling approach, we demonstrate that both the number of actors (actors richness) and the diversity of the abilities and skills that characterize their management capabilities (actors’ functional diversity) are key determinants of the resilience of social-ecological systems to global change. A high complementarity of the actors’ functional diversity helps to buffer vulnerable mountain systems against socio-economic and climate change. Actors’ response diversity can mediate an abrupt shift in the social-ecological system, leading to new trade-offs in ecosystem services. Our results highlight the importance of considering both the diversity and the complementarity of actors’ management capabilities to ensure the provision of ecosystem services in the face of uncertain global change.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Aligning social networks and co-designed visions to foster systemic innovation in the Alps
Regional Environmental Change Open Access 28 July 2023
-
Trends in tropical forest loss and the social value of emission reductions
Nature Sustainability Open Access 13 July 2023
-
Microeconomic adaptation to severe climate disturbances on Australian coral reefs
Ambio Open Access 02 November 2022
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout



Data availability
The data used for this study and the ALUAM agent-based model code35 are available in the ETH Research Collection with the identifier https://doi.org/10.3929/ethz-b-000221406.
References
Oliver, T. H. et al. Biodiversity and resilience of ecosystem functions. Trends Ecol. Evol. 30, 673–684 (2015).
Tilman, D., Reich, P. B. & Knops, J. M. H. Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature 441, 629–632 (2006).
Naeem, S., Chazdon, R., Duffy, J. E., Prager, C. & Worm, B. Biodiversity and human well-being: an essential link for sustainable development. Proc. R. Soc. Lond. B 283, 20162091 (2016).
Mori, A. S., Furukawa, T. & Sasaki, T. Response diversity determines the resilience of ecosystems to environmental change. Biol. Rev. 88, 349–364 (2013).
Diaz, S. & Cabido, M. Vive la difference: plant functional diversity matters to ecosystem processes. Trends Ecol. Evol. 16, 646–655 (2001).
Hooper, D. U. et al. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol. Monogr. 75, 3–35 (2005).
Ostrom, E. Understanding Institutional Diversity (Princeton Univ. Press, 2005).
Smith, A. & Stirling, A. The politics of social-ecological resilience and sustainable socio-technical transitions. Ecol. Soc. 15, 11 (2010).
Chapin, F. S., Folke, C. & Kofinas, G. P. Principles of Ecosystem Stewardship: Resilience-Based Natural Resource Management in a Changing World (Springer, 2009).
Scheffer, M., Carpenter, S., Foley, J. A., Folke, C. & Walker, B. Catastrophic shifts in ecosystems. Nature 413, 591–596 (2001).
Folke, C., Hahn, T., Olsson, P. & Norberg, J. Adaptive governance of social-ecological systems. Annu. Rev. Environ. Resour. 30, 441–473 (2005).
Adger, W. N. Social and ecological resilience: are they related? Prog. Hum. Geogr. 24, 347–364 (2000).
Gunderson, L. H. & Holling, C. Panarchy: Understanding Transformations in Human and Natural Systems (Island, 2002).
Centola, D. & Macy, M. Complex contagions and the weakness of long ties. Am. J. Sociol. 113, 702–734 (2007).
Padgett, J. F. & Powell, W. W. The Emergence of Organizations and Markets (Princeton Univ. Press, 2012).
Vriend, N. J. An illustration of the essential difference between individual and social learning, and its consequences for computational analyses. J. Econ. Dynam. Control 24, 1–19 (2000).
Golman, R. & Page, S. E. Basins of attraction and equilibrium selection under different learning rules. J. Evol. Econ. 20, 49 (2010).
DeLanda, M. A New Philosophy of Society: Assemblage Theory and Social Complexity (Continuum, 2006).
Biggs, R., Schlüter, M. & Schoon, M. L. Principles for Building Resilience: Sustaining Ecosystem Services in Social-Ecological Systems (Cambridge Univ. Press, 2015).
Quinlan, A. E., Berbés‐Blázquez, M., Haider, L. J. & Peterson, G. D. Measuring and assessing resilience: broadening understanding through multiple disciplinary perspectives. J. Appl. Ecol. 53, 677–687 (2016).
Page, S. E. The Difference: How the Power of Diversity Creates Better Groups, Firms, Schools, and Societies (Princeton Univ. Press, 2008).
Díaz, S. et al. Linking functional diversity and social actor strategies in a framework for interdisciplinary analysis of nature’s benefits to society. Proc. Natl Acad. Sci. USA 108, 895–902 (2011).
Walker, B. et al. A handful of heuristics and some propositions for understanding resilience in social-ecological systems. Ecol. Soc. 11, 13 (2006).
Mountain Research Initiative EDW Working Group Elevation-dependent warming in mountain regions of the world. Nat. Clim. Change 5, 424–430 (2015).
Locatelli, B., Lavorel, S., Sloan, S., Tappeiner, U. & Geneletti, D. Characteristic trajectories of ecosystem services in mountains. Front. Ecol. Environ. 15, 150–159 (2017).
Alessa, L., Kliskey, A., Gosz, J., Griffith, D. & Ziegler, A. MtnSEON and social-ecological systems science in complex mountain landscapes. Front. Ecol. Environ. 16, S4–S10 (2018).
Körner, C. & Oshawa, M. in Ecosystems and Human Well-being: Current State and Trends (eds Hassan, R., Scholes R. & Ash, N.) Ch. 24 (Island, 2005).
Filatova, T., Polhill, J. G. & van Ewijk, S. Regime shifts in coupled socio-environmental systems: review of modelling challenges and approaches. Environ. Model. Softw. 75, 333–347 (2016).
Verburg, P. H. et al. Methods and approaches to modelling the Anthropocene. Glob. Environ. Change 39, 328–340 (2016).
Egli, L., Weise, H., Radchuk, V., Seppelt, R. & Grimm, V. Exploring resilience with agent-based models: state of the art, knowledge gaps and recommendations for coping with multidimensionality. Ecol. Complex. https://doi.org/10.1016/j.ecocom.2018.06.008 (2018).
Arneth, A., Brown, C. & Rounsevell, M. Global models of human decision-making for land-based mitigation and adaptation assessment. Nat. Clim. Change 4, 550–557 (2014).
An, L. Modeling human decisions in coupled human and natural systems: review of agent-based models. Ecol. Model. 229, 25–36 (2012).
Filatova, T., Verburg, P. H., Parker, D. C. & Stannard, C. A. Spatial agent-based models for socio-ecological systems: challenges and prospects. Environ. Model. Softw. 45, 1–7 (2013).
Walker, B., Hollin, C. S., Carpenter, S. R. & Kinzig, A. Resilience, adaptability and transformability in social-ecological systems. Ecol. Soc. 9, 5 (2004).
Huber, R., Brunner, S., Peter, S. & Briner, S. Alpine Land-Use Allocation Model (ALUAM) (ETH Zürich, 2007); https://doi.org/10.3929/ethz-b-000221406
Huber, R., Bugmann, H., Buttler, A. & Rigling, A. Sustainable land-use practices in European mountain regions under global change: an integrated research approach. Ecol. Soc. 18, 36 (2013).
Harris, R. et al. Biological responses to the press and pulse of climate trends and extreme events. Nat. Clim. Change 8, 579–587 (2018).
Janssen, M. A., Anderies, J. M. & Ostrom, E. Robustness of social-ecological systems to spatial and temporal variability. Soc. Nat. Resour. 20, 307–322 (2007).
Kinzig, A. P., Pacala, S. W. & Tilman, D. The Functional Consequences of Biodiversity: Empirical Progress and Theoretical Extensions (Princeton Univ. Press, 2001).
Petchey, O. L. & Gaston, K. J. Functional diversity (FD), species richness and community composition. Ecol. Lett. 5, 402–411 (2002).
Rougoor, C. W., Trip, G., Huirne, R. B. & Renkema, J. A. How to define and study farmers’ management capacity: theory and use in agricultural economics. Agric. Econ. 18, 261–272 (1998).
Lavorel, S. et al. Using plant functional traits to understand the landscape distribution of multiple ecosystem services. J. Ecol. 99, 135–147 (2011).
Botta‐Dukát, Z. Rao’s quadratic entropy as a measure of functional diversity based on multiple traits. J. Veg. Sci. 16, 533–540 (2005).
Göthe, E., Sandin, L., Allen, C. R. & Angeler, D. G. Quantifying spatial scaling patterns and their local and regional correlates in headwater streams: implications for resilience. Ecol. Soc. 19, 15 (2014).
Fischer, J. et al. Functional richness and relative resilience of bird communities in regions with different land use intensities. Ecosystems 10, 964–974 (2007).
Angeler, D. G., Allen, C. R. & Johnson, R. K. Measuring the relative resilience of subarctic lakes to global change: redundancies of functions within and across temporal scales. J. Appl. Ecol. 50, 572–584 (2013).
Burrows, R. C., Wancio, D., Levitt, P. & Lillien, L. Response diversity and the timing of progenitor cell maturation are regulated by developmental changes in EGFR expression in the cortex. Neuron 19, 251–267 (1997).
Carpenter, S. R. et al. Early warnings of regime shifts: a whole-ecosystem experiment. Science 332, 1079–1082 (2011).
Luthe, T. & Wyss, R. Introducing adaptive waves as a concept to inform mental models of resilience. Sustain. Sci. 10, 673–685 (2015).
Folke, C. Resilience: the emergence of a perspective for social-ecological systems analyses. Glob. Environ. Change 16, 253–267 (2006).
Brunner, S. H. & Grêt-Regamey, A. Policy strategies to foster the resilience of mountain social-ecological systems under uncertain global change. Environ. Sci. Policy 66, 129–139 (2016).
Schermer, M. et al. Institutional impacts on the resilience of mountain grasslands: an analysis based on three European case studies. Land Use Policy 52, 382–391 (2016).
Chapin, S. H.III et al. Ecosystem stewardship: sustainability strategies for a rapidly changing planet. Trends Ecol. Evol. 25, 241–249 (2010).
Meyfroidt, P., Lambin, E. F., Erb, K.-H. & Hertel, T. W. Globalization of land use: distant drivers of land change and geographic displacement of land use. Curr. Opin. Environ. Sustain. 5, 438–444 (2013).
Schirpke, U. et al. Future impacts of changing land-use and climate on ecosystem services of mountain grassland and their resilience. Ecosyst. Serv. 26, 79–94 (2017).
Lavorel, S. et al. Historical trajectories in land use pattern and grassland ecosystem services in two European alpine landscapes. Reg. Environ. Change 17, 2251–2264 (2017).
Bender, O. & Kanitscheider, S. New immigration into the European Alps: emerging research issues. Mt. Res. Dev. 32, 235–241 (2012).
Grêt-Regamey, A. et al. On the effects of scale for ecosystem services mapping. PLoS ONE 9, e112601 (2014).
Crouzat, E. et al. Assessing bundles of ecosystem services from regional to landscape scale: insights from the French Alps. J. Appl. Ecol. 52, 1145–1155 (2015).
Grêt-Regamey, A., Bebi, P., Bishop, I. D. & Schmid, W. A. Linking GIS-based models to value ecosystem services in an Alpine region. J. Environ. Manage. 89, 197–208 (2008).
Navarro, L. M. & Pereira, H. M. in Rewilding European Landscapes 3–23 (Springer, 2015).
Lamarque, P., Lavorel, S., Mouchet, M. & Quétier, F. Plant trait-based models identify direct and indirect effects of climate change on bundles of grassland ecosystem services. Proc. Natl Acad. Sci. USA 111, 13751–13756 (2014).
Bürgi, M., Silbernagel, J., Wu, J. & Kienast, F. Linking ecosystem services with landscape history. Landsc. Ecol. 30, 11–20 (2015).
Schirpke, U., Timmermann, F., Tappeiner, U. & Tasser, E. Cultural ecosystem services of mountain regions: modelling the aesthetic value. Ecol. Indic. 69, 78–90 (2016).
Lamarque, P. et al. Stakeholder perceptions of grassland ecosystem services in relation to knowledge on soil fertility and biodiversity. Reg. Environ. Change 11, 791–804 (2011).
Scherrer, D. & Körner, C. Topographically controlled thermal‐habitat differentiation buffers alpine plant diversity against climate warming. J. Biogeogr. 38, 406–416 (2011).
Levers, C. et al. Archetypical patterns and trajectories of land systems in Europe. Reg. Environ. Change 18, 715–732 (2018).
Nagler, M. et al. Different management of larch grasslands in the European Alps shows low impact on above-and belowground carbon stocks. Agric. Ecosyst. Environ. 213, 186–193 (2015).
Brunner, S. H., Huber, R. & Grêt-Regamey, A. A backcasting approach for matching regional ecosystem services supply and demand. Environ. Model. Softw. 75, 439–458 (2016).
Chételat, J. et al. A contextual analysis of land-use and vegetation changes in two wooded pastures in the Swiss Jura Mountains. Ecol. Soc. 18, 39 (2013).
Grimm, V. et al. The ODD protocol: a review and first update. Ecol. Model. 221, 2760–2768 (2010).
Huber, R. et al. Modeling social-ecological feedback effects in the implementation of payments for environmental services in pasture-woodlands. Ecol. Soc. 18, 41 (2013).
Brändle, J. M., Langendijk, G., Peter, S., Brunner, S. H. & Huber, R. Sensitivity analysis of a land-use change model with and without agents to assess land abandonment and long-term re-forestation in a swiss mountain region. Land 4, 475–512 (2015).
Schumacher, S. & Bugmann, H. The relative importance of climatic effects, wildfires and management for future forest landscape dynamics in the Swiss Alps. Glob. Change Biol. 12, 1435–1450 (2006).
Huber, R. et al. Inter- and transdisciplinary perspective on the integration of ecological processes into ecosystem services analysis in a mountain region. Ecol. Process. 3, 9 (2014).
Briner, S., Elkin, C., Huber, R. & Grêt-Regamey, A. Assessing the impacts of economic and climate changes on land-use in mountain regions: a spatial dynamic modeling approach. Agric. Ecosyst. Environ. 149, 50–63 (2012).
Huber, R. et al. Interaction effects of targeted agri-environmental payments on non-marketed goods and services under climate change in a mountain region. Land Use Policy 66, 49–60 (2017).
Hyndman, R. J. Another look at forecast-accuracy metrics for intermittent demand. Foresight 4, 43–46 (2006).
Walz, A. et al. Experience from downscaling IPCC-SRES scenarios to specific national-level focus scenarios for ecosystem service management. Technol. Forecast. Soc. Change 86, 21–32 (2014).
Grêt-Regamey, A. et al. On the importance of non-linear relationships between landscape patterns and the sustainable provision of ecosystem services. Landsc. Ecol. 29, 201–212 (2014).
Rewitzer, S., Huber, R., Grêt-Regamey, A. & Barkmann, J. Economic valuation of cultural ecosystem service changes to a landscape in the Swiss Alps. Ecol. Serv. 26, 197–208 (2017).
Cadotte, M. W., Cardinale, B. J. & Oakley, T. H. Evolutionary history and the effect of biodiversity on plant productivity. Proc. Natl Acad. Sci. USA 105, 17012–17017 (2008).
Hillebrand, H. & Matthiessen, B. Biodiversity in a complex world: consolidation and progress in functional biodiversity research. Ecol. Lett. 12, 1405–1419 (2009).
Díaz, S. et al. Functional traits, the phylogeny of function, and ecosystem service vulnerability. Ecol. Evol. 3, 2958–2975 (2013).
Spellerberg, I. F. & Fedor, P. J. A tribute to Claude Shannon (1916–2001) and a plea for more rigorous use of species richness, species diversity and the ‘Shannon–Wiener index. Glob. Ecol. Biogeogr. 12, 177–179 (2003).
Villéger, S., Mason, N. W. & Mouillot, D. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89, 2290–2301 (2008).
Mouchet, M. A., Villéger, S., Mason, N. W. & Mouillot, D. Functional diversity measures: an overview of their redundancy and their ability to discriminate community assembly rules. Funct. Ecol. 24, 867–876 (2010).
Gower, J. C. A general coefficient of similarity and some of its properties. Biometrics 27, 857–871 (1971).
Rao, C. R. Diversity and dissimilarity coefficients: a unified approach. Theor. Popul. Biol. 21, 24–43 (1982).
Casanoves, F., Pla, L., Di Rienzo, J. A. & Díaz, S. FDiversity: a software package for the integrated analysis of functional diversity. Methods Ecol. Evol. 2, 233–237 (2011).
Acknowledgements
This work was supported by the Competence Centre Environment and Sustainability of the ETH Domain, Switzerland, and the project “MntPaths – Pathways for global change adaptation of mountain socio-ecological systems”, grant no. 20521L_169916, funded by the Swiss National Science Foundation. We acknowledge the work of all researchers involved in the inter- and transdisciplinary research project MOUNTLAND, which provided input to this study. We thank R. Sonderegger for his graphical support, U. Fink for proofreading and B. Weibel for editorial support and proofreading.
Author information
Authors and Affiliations
Contributions
A.G.-R. designed the research and wrote the manuscript. S.H.H. and R.H. reviewed the literature, performed the simulation runs, analysed the data and edited the paper.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Figures 1–3, Supplementary Tables 1–4, Supplementary References 1–5
Rights and permissions
About this article
Cite this article
Grêt-Regamey, A., Huber, S.H. & Huber, R. Actors’ diversity and the resilience of social-ecological systems to global change. Nat Sustain 2, 290–297 (2019). https://doi.org/10.1038/s41893-019-0236-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41893-019-0236-z
This article is cited by
-
Trends in tropical forest loss and the social value of emission reductions
Nature Sustainability (2023)
-
Microeconomic adaptation to severe climate disturbances on Australian coral reefs
Ambio (2023)
-
Socio-ecological vulnerability in rural Spain: research gaps and policy implications
Regional Environmental Change (2023)
-
Aligning social networks and co-designed visions to foster systemic innovation in the Alps
Regional Environmental Change (2023)
-
Sub-Saharan Africa’s international migration constrains its sustainable development under climate change
Sustainability Science (2022)