Review Article | Published:

Contributions of sociometabolic research to sustainability science

Abstract

Recent high-level agreements such as the Paris Agreement and the Sustainable Development Goals aim at mitigating climate change, ecological degradation and biodiversity loss while pursuing social goals such as reducing hunger or poverty. Systemic approaches bridging natural and social sciences are required to support these agendas. The surging human use of biophysical resources (materials, energy) results from the pursuit of social and economic goals, while driving global environmental change. Sociometabolic research links the study of socioeconomic processes with biophysical processes and thus plays a pivotal role in understanding society–nature interactions. It includes a broad range of systems science approaches for measuring, analysing and modelling of biophysical stocks and flows as well as the services they provide to society. Here we outline and systematize major sociometabolic research traditions that study the biophysical basis of economic activity: urban metabolism, the multiscale integrated assessment of societal and ecosystem metabolism, biophysical economics, material and energy flow analysis, and environmentally extended input–output analysis. Examples from recent research demonstrate strengths and weaknesses of sociometabolic research. We discuss future research directions that could also help to enrich related fields.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Data availability

The analyses shown in Figs. 36 rely on publicly available data from the cited references.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    IPCC Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) (Cambridge Univ. Press, 2014).

  2. 2.

    Global Material Flows and Resource Productivity (United Nations Environment Programme, 2016).

  3. 3.

    Policy Coherence of the Sustainable Development Goals, a Natural Resources Perspective (United Nations Environment Programme, 2015).

  4. 4.

    Stern, N. The economics of climate change. Am. Econ. Rev. 98, 1–37 (2008).

  5. 5.

    Foxon, T. J. Transition pathways for a UK low carbon electricity future. Energy Policy 52, 10–24 (2013).

  6. 6.

    Hertwich, E. G. et al. Integrated life-cycle assessment of electricity-supply scenarios confirms global environmental benefit of low-carbon technologies. Proc. Natl Acad. Sci. USA 112, 6277–6282 (2015).

  7. 7.

    McCollum, D. L. et al. Connecting the sustainable development goals by their energy inter-linkages. Environ. Res. Lett. 13, 033006 (2018).

  8. 8.

    Liu, J. et al. Systems integration for global sustainability. Science 347, 1258832 (2015).

  9. 9.

    Hoekstra, A. Y. & Wiedmann, T. O. Humanity’s unsustainable environmental footprint. Science 344, 1114–1117 (2014).

  10. 10.

    Plevin, R. J., Delucchi, M. A. & Creutzig, F. Using attributional life cycle assessment to estimate climate-change mitigation benefits misleads policy makers. J. Ind. Ecol. 18, 73–83 (2014).

  11. 11.

    Fischer-Kowalski, M. & Weisz, H. Society as hybrid between material and symbolic realms. Adv. Hum. Ecol. 8, 215–251 (1999).

  12. 12.

    González de Molina, M. & Toledo, V. M. The Social Metabolism: A Socio-Ecological Theory of Historical Change (Springer, Cham, 2014).

  13. 13.

    Weisz, H. The probability of the improbable: society–nature coevolution. Geogr. Ann. Ser. B 93, 325–336 (2011).

  14. 14.

    Weisz, H., Suh, S. & Graedel, T. E. Industrial ecology: the role of manufactured capital in sustainability. Proc. Natl Acad. Sci. USA 112, 6260–6264 (2015).

  15. 15.

    Krausmann, F. et al. Global socioeconomic material stocks rise 23-fold over the 20th century and require half of annual resource use. Proc. Natl Acad. Sci. USA 114, 1880–1885 (2017).

  16. 16.

    Pauliuk, S. & Müller, D. B. The role of in-use stocks in the social metabolism and in climate change mitigation. Glob. Environ. Change 24, 132–142 (2014).

  17. 17.

    Haberl, H., Wiedenhofer, D., Erb, K.-H., Görg, C. & Krausmann, F. The material stock–flow–service nexus: a new approach for tackling the decoupling conundrum. Sustainability 9, 1049 (2017).

  18. 18.

    Pauliuk, S. & Hertwich, E. G. Socioeconomic metabolism as paradigm for studying the biophysical basis of human societies. Ecol. Econ. 119, 83–93 (2015).

  19. 19.

    Lejano, R. P. & Stokols, D. Social ecology, sustainability, and economics. Ecol. Econ. 89, 1–6 (2013).

  20. 20.

    Goodland, R. & Daly, H. Environmental sustainability: universal and non-negotiable. Ecol. Appl. 6, 1002–1017 (1996).

  21. 21.

    Daly, H. E. Economics in a full world. Sci. Am. 293, 78–85 (2005).

  22. 22.

    Fischer-Kowalski, M. et al. Methodology and indicators of economy-wide material flow accounting — state of the art and reliability across sources. J. Ind. Ecol. 15, 855–876 (2011).

  23. 23.

    Fischer-Kowalski, M. Society’s metabolism: the intellectual history of materials flow analysis, part I, 1860–1970. J. Ind. Ecol. 2, 107–136 (1998).

  24. 24.

    Christensen, P. Classical roots for a modern materials-energy analysis. Ecol. Modell. 38, 75–89 (1987).

  25. 25.

    Cleveland, C. J. Biophysical economics: historical perspective and current research trends. Ecol. Modell. 38, 47–73 (1987).

  26. 26.

    Martinez-Alier, J. Ecological Economics: Energy, Environment and Society (Blackwell, Oxford, UK, Cambridge, USA, 1987).

  27. 27.

    Dunlap, R. E. & Catton, W. R. Struggling with human exemptionalism: the rise, decline and revitalization of environmental sociology. Am. Sociol. 25, 5–30 (1994).

  28. 28.

    Røpke, I. Trends in the development of ecological economics from the late 1980s to the early 2000s. Ecol. Econ. 55, 262–290 (2005).

  29. 29.

    Martinez-Alier, J., Munda, G. & O’Neill, J. in The Economics of Nature and the Nature of Economics (eds Cleveland, C. J., Stern, D. I. & Costanza, R.) 34–56 (Edward Elgar, Cheltenham, UK, Northhampton, MA, 2001).

  30. 30.

    Varela, F. G., Maturana, H. R. & Uribe, R. Autopoiesis: the organization of living systems, its characterization and a model. Biosystems 5, 187–196 (1974).

  31. 31.

    Ulanowicz, R. E. Ecology, the Ascendent Perspective (Columbia Univ. Press, New York, 1997).

  32. 32.

    Holling, C. S. Resilience and stability of ecological systems. Annu. Rev. Ecol. Evol. Syst. 4, 1–23 (1973).

  33. 33.

    Bringezu, S., Fischer-Kowalski, M., Kleijn, R. & Palm, V. (eds) In Proc. ConAccount Workshop 21–23 January 1997, Leiden (Wuppertal Institute, Wuppertal, 1997).

  34. 34.

    Amate, J., Molina, M. Gde & Toledo, V. M. El metabolismo social. Historias, métodos y principales aportaciones. Revista Iberoamericana Econ. Ecol. 27, 30–152 (2017).

  35. 35.

    Wolman, A. The metabolism of cities. Sci. Am. 213, 179–190 (1965).

  36. 36.

    Boyden, S., Millar, S., Newcombe, K. & O’Neill, B. Ecology of a City and its People: The Case of Hong Kong (Austrian National Univ., Canberra, 1981).

  37. 37.

    von Thünen, J. H. Der isolierte Staat in Beziehung auf Landwirtschaft und Nationalökonomie (Historisches Wirtschaftsarchiv, Paderborn, 2013).

  38. 38.

    Kennedy, C. A. et al. Energy and material flows of megacities. Proc. Natl Acad. Sci. USA 112, 5985–5990 (2015).

  39. 39.

    Lenzen, M. & Peters, G. M. How city dwellers affect their resource hinterland. J. Ind. Ecol. 14, 73–90 (2010).

  40. 40.

    Schäffler, A. & Swilling, M. Valuing green infrastructure in an urban environment under pressure — the Johannesburg case. Ecol. Econ. 86, 246–257 (2013).

  41. 41.

    Ramaswami, A., Russell, A. G., Culligan, P. J., Sharma, K. R. & Kumar, E. Meta-principles for developing smart, sustainable, and healthy cities. Science 352, 940–943 (2016).

  42. 42.

    Athanassiadis, A. et al. Comparing a territorial-based and a consumption-based approach to assess the local and global environmental performance of cities. J. Clean. Prod. 173, 112–123 (2018).

  43. 43.

    Kennedy, C., Pincetl, S. & Bunje, P. The study of urban metabolism and its applications to urban planning and design. Environ. Pollut. 159, 1965–1973 (2011).

  44. 44.

    Zhang, Y., Yang, Z. & Yu, X. Urban metabolism: a review of current knowledge and directions for future study. Environ. Sci. Technol. 49, 11247–11263 (2015).

  45. 45.

    Gandy, M. Rethinking urban metabolism: water, space and the modern city. City 8, 363–379 (2004).

  46. 46.

    Newell, J. P. & Cousins, J. J. The boundaries of urban metabolism: towards a political-industrial ecology. Prog. Hum. Geogr. 39, 702–728 (2015).

  47. 47.

    Beloin-Saint-Pierre, D. et al. A review of urban metabolism studies to identify key methodological choices for future harmonization and implementation. J. Clean. Prod. 163, S223–S240 (2017).

  48. 48.

    Georgescu-Roegen, N. The Entropy Law and the Economic Process (Harvard Univ. Press, Cambridge, USA, 1971).

  49. 49.

    Giampietro, M., Mayumi, K. & Sorman, A. H. The Metabolic Pattern of Societies: Where Economists Fall Short (Routledge, London, 2012).

  50. 50.

    Gerber, J.-F. & Scheidel, A. In search of substantive economics: comparing today’s two major socio-metabolic approaches to the economy — MEFA and MuSIASEM. Ecol. Econ. 144, 186–194 (2018).

  51. 51.

    Giampietro, M., Mayumi, K. & Ramos-Martin, J. Multi-scale integrated analysis of societal and ecosystem metabolism (MuSIASEM): theoretical concepts and basic rationale. Energy 34, 313–322 (2009).

  52. 52.

    Ravera, F. et al. Pathways of rural change: an integrated assessment of metabolic patterns in emerging ruralities. Environ. Dev. Sustain. 16, 811–820 (2014).

  53. 53.

    Silva-Macher, J. C. A metabolic profile of Peru: an application of multi-scale integrated analysis of societal and ecosystem metabolism (MuSIASEM) to the mining sector’s exosomatic energy flows. J. Ind. Ecol. 20, 1072–1082 (2016).

  54. 54.

    Chifari, R., Lo Piano, S., Bukkens, S. G. F. & Giampietro, M. A holistic framework for the integrated assessment of urban waste management systems. Ecol. Indic. 94, 24–36 (2016).

  55. 55.

    Giampietro, M., Aspinall, R. J., Ramos-Martin, J. & Bukkens, S. G. F. Resource Accounting for Sustainability Assessment: The Nexus between Energy, Food, Water and Land Use (Routledge, London, 2014).

  56. 56.

    Lomas, P. L. & Giampietro, M. Environmental accounting for ecosystem conservation: linking societal and ecosystem metabolisms. Ecol. Modell. 346, 10–19 (2017).

  57. 57.

    Boulding, K. in Steady State Economics (ed. Daly, H. E.) 121–132 (W. H. Freeman, San Francisco, 1972).

  58. 58.

    Ayres, R. U. & Kneese, A. V. Production, consumption, and externalities. Am. Econ. Rev. 59, 282–297 (1969).

  59. 59.

    Odum, H. T. Environment, Power and Society (Wiley-Interscience, New York, 1971).

  60. 60.

    Dale, M., Krumdieck, S. & Bodger, P. Global energy modelling — a biophysical approach (GEMBA) part 1: an overview of biophysical economics. Ecol. Econ. 73, 152–157 (2012).

  61. 61.

    Cleveland, C. J., Costanza, R., Hall, C. A. S. & Kaufmann, R. Energy and the US economy: a biophysical perspective. Science 225, 890–897 (1984).

  62. 62.

    Lambert, J. G., Hall, C. A. S., Balogh, S., Gupta, A. & Arnold, M. Energy, EROI and quality of life. Energy Policy 64, 153–167 (2014).

  63. 63.

    Gupta, A. K. & Hall, C. A. S. A review of the past and current state of EROI data. Sustainability 3, 1796–1809 (2011).

  64. 64.

    Hall, C. A. S. & Klitgaard, K. A. Energy and the Wealth of Nations: An Introduction to Biophysical Economics (Springer, New York, 2017).

  65. 65.

    Kümmel, R. The Second Law of Economics, Energy, Entropy and the Origins of Wealth (Springer, New York, 2011).

  66. 66.

    Hall, C., Lindenberger, D., Kümmel, R., Kroeger, T. & Eichhorn, W. The need to reintegrate the natural sciences with economics. BioScience 51, 663–673 (2001).

  67. 67.

    Hall, C. A. S., Balogh, S. & Murphy, D. J. R. What is the minimum EROI that a sustainable society must have? Energies 2, 25–47 (2009).

  68. 68.

    King, L. C. & van den Bergh, J. C. J. M. Implications of net energy-return-on-investment for a low-carbon energy transition. Nat. Energy 3, 334–340 (2018).

  69. 69.

    Odum, H. T. Environmental Accounting, EMERGY and Environmental Decision Making (Wiley, Chichester, 1996).

  70. 70.

    Geng, Y., Sarkis, J., Ulgiati, S. & Zhang, P. Measuring China’s circular economy. Science 339, 1526–1527 (2013).

  71. 71.

    Yang, Z. F. et al. Solar energy evaluation for Chinese economy. Energy Policy 38, 875–886 (2010).

  72. 72.

    Ayres, R. U., Ayres, L. W. & Warr, B. Exergy, power and work in the US economy, 1900–1998. Energy 28, 219–273 (2003).

  73. 73.

    Sousa, T. et al. The need for robust, consistent methods in societal exergy accounting. Ecol. Econ. 141, 11–21 (2017).

  74. 74.

    Romero, J. C. & Linares, P. Exergy as a global energy sustainability indicator. A review of the state of the art. Renew. Sustain. Energy Rev. 33, 427–442 (2014).

  75. 75.

    Ayres, R. U. & Ayres, L. W. Accounting for Resources, 1: Economy-Wide Applications of Mass-Balance Principles to Materials and Waste (Edward Elgar, Cheltenham, UK, Northhampton, MA, 1998).

  76. 76.

    Baccini, P. & Brunner, P. H. Metabolism of the Anthroposphere (Springer-Verlag, Berlin, 1991).

  77. 77.

    Moriguchi, Y. Material flow indicators to measure progress toward a sound material-cycle society. J. Mater. Cycles Waste Manag. 9, 112–120 (2007).

  78. 78.

    Baccini, P. & Bader, H.-P. Regionaler Stoffhaushalt (Spektrum Akademischer Verlag, Heidelberg, 1986).

  79. 79.

    Krausmann, F., Schandl, H., Eisenmenger, N., Giljum, S. & Jackson, T. Material flow accounting: measuring global material use for sustainable development. Annu. Rev. Environ. Resour. 42, 647–675 (2017).

  80. 80.

    Giljum, S., Dittrich, M., Lieber, M. & Lutter, S. Global patterns of material flows and their socio-economic and environmental implications: a MFA study on all countries world-wide from 1980 to 2009. Resources 3, 319–339 (2014).

  81. 81.

    Dong, L. et al. Material flows and resource productivity in China, South Korea and Japan from 1970 to 2008: a transitional perspective. J. Clean. Prod. 141, 1164–1177 (2017).

  82. 82.

    Steinberger, J. K., Krausmann, F., Getzner, M., Schandl, H. & West, J. Development and dematerialization: an international study. PLoS ONE 8, e70385 (2013).

  83. 83.

    Chen, M. & Graedel, T. E. A half-century of global phosphorus flows, stocks, production, consumption, recycling, and environmental impacts. Glob. Environ. Change 36, 139–152 (2016).

  84. 84.

    Huang, C.-L., Vause, J., Ma, H.-W. & Yu, C.-P. Using material/substance flow analysis to support sustainable development assessment: a literature review and outlook. Resour. Conserv. Recycl. 68, 104–116 (2012).

  85. 85.

    Leontief, W. Environmental repercussions and the economic structure: an input–output approach. Rev. Econ. Stat. 52, 262–271 (1970).

  86. 86.

    Daly, H. E. On economics as a life science. J. Polit. Econ. 76, 392–406 (1968).

  87. 87.

    Tukker, A. et al. Towards robust, authoritative assessments of environmental impacts embodied in trade: current state and recommendations. J. Ind. Ecol. 22, 585–598 (2018).

  88. 88.

    Malik, A., McBain, D., Wiedmann, T. O., Lenzen, M. & Murray, J. Advancements in input–output models and indicators for consumption-based accounting: MRIO models for consumption-based accounting. J. Ind. Ecol. https://doi.org/10.1111/jiec.12771 (2018).

  89. 89.

    Bullard, I. & Herendeen, R. A. The energy cost of goods and services. Energy Policy 3, 268–278 (1975).

  90. 90.

    Bullard, C. W., Penner, P. S. & Pilati, D. A. Net energy analysis: handbook for combining process and input–output analysis. Resour. Energy 1, 267–313 (1978).

  91. 91.

    Wood, R., Stadler, K., Bulavskaya, T., Giljum, S. & Lutter, S. Growth in environmental footprints and environmental impacts embodied in trade: resource efficiency indicators from EXIOBASE3. J. Ind. Ecol. 22, 553–564 (2018).

  92. 92.

    Plank, B., Eisenmenger, N., Schaffartzik, A. & Wiedenhofer, D. International trade drives global resource use: a structural decomposition analysis of raw material consumption from 1990–2010. Environ. Sci. Technol. 52, 4190–4198 (2018).

  93. 93.

    Meng, J. et al. The rise of south–south trade and its effect on global CO2 emissions. Nat. Commun. 9, 1871 (2018).

  94. 94.

    Wiedmann, T. & Lenzen, M. Environmental and social footprints of international trade. Nat. Geosci. 11, 314–321 (2018).

  95. 95.

    Wackernagel, M. et al. Tracking the ecological overshoot of the human economy. Proc. Natl Acad. Sci. USA 99, 9266–9271 (2002).

  96. 96.

    Guinée, J. B. & Heijungs, R. In Kirk-Othmer Encyclopedia of Chemical Technology https://doi.org/10.1002/0471238961.lifeguin.a01 (Wiley, 2015).

  97. 97.

    Hellweg, S. & Canals, L. Mi Emerging approaches, challenges and opportunities in life cycle assessment. Science 344, 1109–1113 (2014).

  98. 98.

    Zamagni, A., Guinée, J., Heijungs, R., Masoni, P. & Raggi, A. Lights and shadows in consequential LCA. Int. J. Life Cycle Assess. 17, 904–918 (2012).

  99. 99.

    Earles, J. M. & Halog, A. Consequential life cycle assessment: a review. Int. J. Life Cycle Assess. 16, 445–453 (2011).

  100. 100.

    Pauliuk, S., Arvesen, A., Stadler, K. & Hertwich, E. G. Industrial ecology in integrated assessment models. Nat. Clim. Change 7, 13–20 (2017).

  101. 101.

    Crutzen, P. J. Geology of mankind. Nature 415, 23–23 (2002).

  102. 102.

    Steffen, W. et al. Planetary boundaries: guiding human development on a changing planet. Science 347, 1259855–1259855 (2015).

  103. 103.

    IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

  104. 104.

    Johnson, C. N. et al. Biodiversity losses and conservation responses in the Anthropocene. Science 356, 270–275 (2017).

  105. 105.

    Lenton, T. M., Pichler, P.-P. & Weisz, H. Revolutions in energy input and material cycling in Earth history and human history. Earth Syst. Dyn. 7, 353–370 (2016).

  106. 106.

    Schandl, H. et al. Global material flows and resource productivity: forty years of evidence. J. Ind. Ecol. 22, 827–838 (2017).

  107. 107.

    Ehrlich, P. R. The Population Bomb: Population Control or Race to Oblivion? (Sierra Club, Ballantine Books, New York, 1968).

  108. 108.

    York, R., Rosa, E. A. & Dietz, T. STIRPAT, IPAT and ImPACT: analytic tools for unpacking the driving forces of environmental impacts. Ecol. Econ. 46, 351–365 (2003).

  109. 109.

    Moran, D. D., Wackernagel, M., Kitzes, J. A., Goldfinger, S. H. & Boutaud, A. Measuring sustainable development — nation by nation. Ecol. Econ. 64, 470–474 (2008).

  110. 110.

    Steinberger, J. K., Timmons Roberts, J., Peters, G. P. & Baiocchi, G. Pathways of human development and carbon emissions embodied in trade. Nat. Clim. Change 2, 81–85 (2012).

  111. 111.

    Dietz, T., Rosa, E. A. & York, R. Environmentally efficient well-being: Is there a Kuznets curve? Appl. Geogr. 32, 21–28 (2012).

  112. 112.

    Ayres, R. U. & Warr, B. The Economic Growth Engine: How Energy And Work Drive Material Prosperity (Edward Elgar, Cheltenham, UK, Northhampton, MA, 2009).

  113. 113.

    Warr, B. & Ayres, R. U. Useful work and information as drivers of economic growth. Ecol. Econ. 73, 93–102 (2012).

  114. 114.

    Zhang, C., Chen, W.-Q. & Ruth, M. Measuring material efficiency: a review of the historical evolution of indicators, methodologies and findings. Resour. Conserv. Recycl. 132, 79–92 (2018).

  115. 115.

    Decoupling Natural Resource Use And Environmental Impacts From Economic Growth (United Nations Environment Programme, 2011).

  116. 116.

    Pothen, F. & Schymura, M. Bigger cakes with fewer ingredients? A comparison of material use of the world economy. Ecol. Econ. 109, 109–121 (2015).

  117. 117.

    Shao, Q., Schaffartzik, A., Mayer, A. & Krausmann, F. The high ‘price’ of dematerialization: a dynamic panel data analysis of material use and economic recession. J. Clean. Prod. 167, 120–132 (2017).

  118. 118.

    Costanza, R. et al. Development: time to leave GDP behind. Nature 505, 283–285 (2014).

  119. 119.

    Bringezu, S. et al. Multi-scale governance of sustainable natural resource use — challenges and opportunities for monitoring and institutional development at the national and global level. Sustainability 8, 778 (2016).

  120. 120.

    Krausmann, F., Fischer‐Kowalski, M., Schandl, H. & Eisenmenger, N. The global sociometabolic transition. J. Ind. Ecol. 12, 637–656 (2008).

  121. 121.

    Steinberger, J. K., Krausmann, F. & Eisenmenger, N. Global patterns of materials use: a socioeconomic and geophysical analysis. Ecol. Econ. 69, 1148–1158 (2010).

  122. 122.

    Wiedmann, T. O. et al. The material footprint of nations. Proc. Natl Acad. Sci. USA 112, 6271–6276 (2015).

  123. 123.

    Muradian, R., Walter, M. & Martinez-Alier, J. Global transformations, social metabolism and the dynamics of socio-environmental conflicts. Glob. Environ. Change 22(Spec. Issue), 559–794 (2012).

  124. 124.

    Simas, M., Pauliuk, S., Wood, R., Hertwich, E. G. & Stadler, K. Correlation between production and consumption-based environmental indicators. Ecol. Indic. 76, 317–323 (2017).

  125. 125.

    Steinberger, J. K. & Krausmann, F. Material and energy productivity. Environ. Sci. Technol. 45, 1169–1176 (2011).

  126. 126.

    Görg, C. et al. Challenges for social-ecological transformations: contributions from social and political ecology. Sustainability 9, 1045 (2017).

  127. 127.

    O’Neill, D. W., Fanning, A. L., Lamb, W. F. & Steinberger, J. K. A good life for all within planetary boundaries. Nat. Sustain. 1, 88–95 (2018).

  128. 128.

    Bringezu, S. Possible target corridor for sustainable use of global material resources. Resources 4, 25–54 (2015).

  129. 129.

    Ghisellini, P., Cialani, C. & Ulgiati, S. A review on circular economy: the expected transition to a balanced interplay of environmental and economic systems. J. Clean. Prod. 114, 11–32 (2016).

  130. 130.

    McDowall, W. et al. Circular economy policies in china and europe: circular economy policies in China and Europe. J. Ind. Ecol. 21, 651–661 (2017).

  131. 131.

    Björklund, A. & Finnveden, G. Recycling revisited — life cycle comparisons of global warming impact and total energy use of waste management strategies. Resour. Conserv. Recycl. 44, 309–317 (2005).

  132. 132.

    Reck, B. K. & Graedel, T. E. Challenges in metal recycling. Science 337, 690–695 (2012).

  133. 133.

    Graedel, T. E., Harper, E. M., Nassar, N. T. & Reck, B. K. On the materials basis of modern society. Proc. Natl Acad. Sci. USA 112, 6295–6300 (2015).

  134. 134.

    Ciacci, L., Reck, B. K., Nassar, N. T. & Graedel, T. E. Lost by design. Environ. Sci. Technol. 49, 9443–9451 (2015).

  135. 135.

    Pauliuk, S., Milford, R. L., Müller, D. B. & Allwood, J. M. The steel scrap age. Environ. Sci. Technol. 47, 3448–3454 (2013).

  136. 136.

    Wang, P., Li, W. & Kara, S. Dynamic life cycle quantification of metallic elements and their circularity, efficiency, and leakages. J. Clean. Prod. 174, 1492–1502 (2018).

  137. 137.

    Graedel, T. E. et al. What do we know about metal recycling rates? J. Ind. Ecol. 15, 355–366 (2011).

  138. 138.

    Haas, W., Krausmann, F., Wiedenhofer, D. & Heinz, M. How circular is the global economy? An assessment of material flows, waste production, and recycling in the European Union and the world in 2005. J. Ind. Ecol. 19, 765–777 (2015).

  139. 139.

    Pauliuk, S. Critical appraisal of the circular economy standard BS 8001:2017 and a dashboard of quantitative system indicators for its implementation in organizations. Resour. Conserv. Recycl. 129, 81–92 (2018).

  140. 140.

    Mayer, A., Haas, W. & Wiedenhofer, D. How countries’ resource use history matters for human well-being — an investigation of global patterns in cumulative material flows from 1950 to 2010. Ecol. Econ. 134, 1–10 (2017).

  141. 141.

    Porter, M., Stern, S. & Green, M. Social Progress Index 2017 (Social Progress Imperative, 2017).

  142. 142.

    Costa, L., Rybski, D. & Kropp, J. P. A human development framework for CO2 reductions. PLoS ONE 6, e29262 (2011).

  143. 143.

    Lamb, W. F. et al. Transitions in pathways of human development and carbon emissions. Environ. Res. Lett. 9, 014011 (2014).

  144. 144.

    Dearing, J. A. et al. Safe and just operating spaces for regional social-ecological systems. Glob. Environ. Change 28, 227–238 (2014).

  145. 145.

    Measuring Material Flows and Resource Productivity. Volume I. The OECD Guide (Organisation for Economic Co-Operation and Development, 2008).

  146. 146.

    Liao, W., Heijungs, R. & Huppes, G. Thermodynamic analysis of human–environment systems: a review focused on industrial ecology. Ecol. Modell. 228, 76–88 (2012).

  147. 147.

    Liu, G., Bangs, C. E. & Müller, D. B. Stock dynamics and emission pathways of the global aluminium cycle. Nat. Clim. Change 3, 338–342 (2012).

  148. 148.

    Sandberg, N. H. et al. Dynamic building stock modelling: application to 11 European countries to support the energy efficiency and retrofit ambitions of the EU. Energy Build. 132, 26–38 (2016).

  149. 149.

    Hertwich, E. G. & Peters, G. P. Carbon footprint of nations: a global, trade-linked analysis. Environ. Sci. Technol. 43, 6414–6420 (2009).

  150. 150.

    Peters, G. P., Minx, J. C., Weber, C. L. & Edenhofer, O. Growth in emission transfers via international trade from 1990 to 2008. Proc. Natl Acad. Sci. USA 108, 8903–8908 (2011).

  151. 151.

    Davis, S. J., Caldeira, K. & Matthews, H. D. Future CO2 emissions and climate change from existing energy infrastructure. Science 329, 1330–1333 (2010).

  152. 152.

    Raupach, M. R. et al. Sharing a quota on cumulative carbon emissions. Nat. Clim. Change 4, 873–879 (2014).

  153. 153.

    Seto, K. C., Golden, J. S., Alberti, M. & Turner, B. L. Sustainability in an urbanizing planet. Proc. Natl Acad. Sci. USA 114, 8935–8938 (2017).

  154. 154.

    Bretschger, L. & Smulders, S. Challenges for a sustainable resource use: uncertainty, trade, and climate policies. J. Environ. Econ. Manag. 64, 279–287 (2012).

  155. 155.

    Laner, D., Rechberger, H. & Astrup, T. Systematic evaluation of uncertainty in material flow analysis. J. Ind. Ecol. 18, 859–870 (2014).

  156. 156.

    Hertwich, E. G. Consumption and the rebound effect: an industrial ecology perspective. J. Ind. Ecol. 9, 85–98 (2005).

  157. 157.

    Ayres, R. U. & Simonis, U. E. Industrial Metabolism: Restructuring for Sustainable Development (United Nations Univ. Press, Tokyo, 1994).

  158. 158.

    Chertow, M., Lifset, R. & Yang, T. In Oxford Bibliographies in Ecology https://doi.org/10.1093/obo/9780199830060-0200 (2018).

  159. 159.

    Erb, K.-H. How a socio-ecological metabolism approach can help to advance our understanding of changes in land-use intensity. Ecol. Econ. 76, 8–14 (2012).

  160. 160.

    Turner, B. L., Lambin, E. F. & Reenberg, A. The emergence of land change science for global environmental change and sustainability. Proc. Natl Acad. Sci. USA 104, 20666–20671 (2007).

  161. 161.

    Allwood, J. M., Ashby, M. F., Gutowski, T. G. & Worrell, E. Material efficiency: a white paper. Resour. Conserv. Recycl. 55, 362–381 (2011).

  162. 162.

    Schandl, H. et al. Decoupling global environmental pressure and economic growth: scenarios for energy use, materials use and carbon emissions. J. Clean. Prod. 132, 45–56 (2016).

  163. 163.

    Duro, J. A., Schaffartzik, A. & Krausmann, F. Metabolic inequality and its impact on efficient contraction and convergence of international material resource use. Ecol. Econ. 145, 430–440 (2018).

  164. 164.

    Pichler, M., Schaffartzik, A., Haberl, H. & Görg, C. Drivers of society–nature relations in the Anthropocene and their implications for sustainability transformations. Curr. Opin. Environ. Sustain. 26–27, 32–36 (2017).

  165. 165.

    López, L. A., Arce, G., Morenate, M. & Zafrilla, J. E. How does income redistribution affect households’ material footprint? J. Clean. Prod. 153, 515–527 (2017).

  166. 166.

    Ahmed, N. M. Failing States, Collapsing Systems: Biophysical Triggers of Political Violence (Springer Nature, Cham, 2017).

  167. 167.

    Martinez-Alier, J. The Environmentalism of the Poor: A Study of Ecological Conflicts and Valuation (Edward Elgar, Cheltenham, UK, Northhampton, MA, 2002).

  168. 168.

    Pérez-Rincón, M., Vargas-Morales, J. & Crespo-Marín, Z. Trends in social metabolism and environmental conflicts in four Andean countries from 1970 to 2013. Sustain. Sci. 13, 635–648 (2018).

  169. 169.

    Simas, M., Goldsteijn, L., Huijbregts, Ma. J., Wood, R. & Hertwich, E. The “bad labor” footprint: quantifying the social impacts of globalization. Sustainability 6, 7514–7540 (2014).

  170. 170.

    Simas, M., Wood, R. & Hertwich, E. Labor embodied in trade. J. Ind. Ecol. 19, 343–356 (2015).

  171. 171.

    Giljum, S. & Eisenmenger, N. North–south trade and the distribution of environmental goods and burdens: a biophysical perspective. J. Environ. Dev. 13, 73–100 (2004).

  172. 172.

    Hornborg, A. & Jorgensen, A. K. International Trade and Environmental Justice: Toward a Global Political Ecology (Nova Science, Hauppauge, 2010).

  173. 173.

    Hornborg, A. & Martinez-Alier, J. Ecologically unequal exchange and ecological debt. J. Polit. Ecol. 23, 328–333 (2016).

  174. 174.

    Rotmans, J. & Fischer-Kowalski, M. Conceptualizing, observing and influencing socio-ecological transitions. Ecol. Soc. 14, 3 (2009).

  175. 175.

    Geels, F. W., Schwanen, T., Sorrell, S., Jenkins, K. & Sovacool, B. K. Reducing energy demand through low carbon innovation: a sociotechnical transitions perspective and thirteen research debates. Energy Res. Soc. Sci. 40, 23–35 (2018).

  176. 176.

    Haberl, H., Fischer-Kowalski, M., Krausmann, F., Martinez-Alier, J. & Winiwarter, V. A socio-metabolic transition towards sustainability? Challenges for another great transformation. Sustain. Dev. 19, 1–14 (2011).

  177. 177.

    Fischer-Kowalski, M. & Hüttler, W. Society’s metabolism: the intellectual history of materials flow analysis, part II, 1970–1998. J. Ind. Ecol. 2, 107–136 (1998).

  178. 178.

    Shiklomanov, I. A. Appraisal and assessment of world water resources. Water Int. 25, 11–32 (2000).

  179. 179.

    Krausmann, F. et al. Growth in global materials use, GDP and population during the 20th century. Ecol. Econ. 68, 2696–2705 (2009).

  180. 180.

    Krausmann, F., Lauk, C., Haas, W. & Wiedenhofer, D. From resource extraction to outflows of wastes and emissions: the socioeconomic metabolism of the global economy, 1900–2015. Glob. Environ. Change 52, 131–140 (2018).

  181. 181.

    Riley, J. C. Estimates of regional and global life expectancy, 1800–2001. Popul. Dev. Rev. 31, 537–543 (2005).

  182. 182.

    World Development Indicators (The World Bank, accessed 22 August 2017); http://data.worldbank.org/data-catalog/world-development-indicators

  183. 183.

    Bolt, J. & van Zanden, J. L. The Maddison Project: collaborative research on historical national accounts. Econ. History Rev. 67, 627–651 (2014).

  184. 184.

    De Stercke, S. Dynamics of Energy Systems: A Useful Perspective IIASA Interim Report No. IR-14-013 (International Institute for Applied Systems Analysis, 2014).

  185. 185.

    Marland, G., Boden, T. A. & Andres, R. J. Global, Regional, and National Fossil-Fuel CO 2 Emissions (Carbon Dioxide Information Analysis Center, Environmental Sciences Division, Oak Ridge National Laboratory, 2016).

  186. 186.

    Cao, Z., Shen, L., Løvik, A. N., Müller, D. B. & Liu, G. Elaborating the history of our cementing societies: an in-use stock perspective. Environ. Sci. Technol. 51, 11468–11475 (2017).

Download references

Acknowledgements

We acknowledge research funding from the European Research Council ERC (MAT_STOCKS, grant 741950) and from the Austrian Science Fund FWF (projects MISO P27590 and GELUC P29130-G27). We thank M. Podovac for help with Figs. 1 and 2 and M. Niedertscheider for help with the maps in Fig. 3.

Author information

All authors contributed to reviewing and discussing literature and writing the article. H.H. and D.W. conceived Fig. 1. M.F.-K. conceived Fig. 2. F.K. and D.W. compiled data and drafted Fig. 3. D.W. compiled data and drafted Fig. 4. S.P. compiled data and drafted Fig. 5. D.W. and S.P. compiled data and drafted Fig. 6. H.H. structured the paper and discussions. All authors contributed to writing the text.

Competing interests

The authors declare no competing interests.

Correspondence to Helmut Haberl.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark
Fig. 1: SMR systematically quantifies flows of biophysical resources associated with defined social systems or their components.
Fig. 2: Family tree of research traditions from social sciences (left side) and natural sciences (right side) that inspire current SMR.
Fig. 3: Scale and dynamics of global social metabolism in the Anthropocene, illustrating the systemic interlinkages between resource use, socioeconomic dynamics and ensuing waste and emissions.
Fig. 4: Biophysical resource use within national-political boundaries.
Fig. 5: Socioeconomic metabolism of steel.
Fig. 6: The sociometabolic basis of human well-being and social progress, as measured through the SPI.