Contributions of sociometabolic research to sustainability science


Recent high-level agreements such as the Paris Agreement and the Sustainable Development Goals aim at mitigating climate change, ecological degradation and biodiversity loss while pursuing social goals such as reducing hunger or poverty. Systemic approaches bridging natural and social sciences are required to support these agendas. The surging human use of biophysical resources (materials, energy) results from the pursuit of social and economic goals, while driving global environmental change. Sociometabolic research links the study of socioeconomic processes with biophysical processes and thus plays a pivotal role in understanding society–nature interactions. It includes a broad range of systems science approaches for measuring, analysing and modelling of biophysical stocks and flows as well as the services they provide to society. Here we outline and systematize major sociometabolic research traditions that study the biophysical basis of economic activity: urban metabolism, the multiscale integrated assessment of societal and ecosystem metabolism, biophysical economics, material and energy flow analysis, and environmentally extended input–output analysis. Examples from recent research demonstrate strengths and weaknesses of sociometabolic research. We discuss future research directions that could also help to enrich related fields.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: SMR systematically quantifies flows of biophysical resources associated with defined social systems or their components.
Fig. 2: Family tree of research traditions from social sciences (left side) and natural sciences (right side) that inspire current SMR.
Fig. 3: Scale and dynamics of global social metabolism in the Anthropocene, illustrating the systemic interlinkages between resource use, socioeconomic dynamics and ensuing waste and emissions.
Fig. 4: Biophysical resource use within national-political boundaries.
Fig. 5: Socioeconomic metabolism of steel.
Fig. 6: The sociometabolic basis of human well-being and social progress, as measured through the SPI.

Data availability

The analyses shown in Figs. 36 rely on publicly available data from the cited references.


  1. 1.

    IPCC Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) (Cambridge Univ. Press, 2014).

  2. 2.

    Global Material Flows and Resource Productivity (United Nations Environment Programme, 2016).

  3. 3.

    Policy Coherence of the Sustainable Development Goals, a Natural Resources Perspective (United Nations Environment Programme, 2015).

  4. 4.

    Stern, N. The economics of climate change. Am. Econ. Rev. 98, 1–37 (2008).

    Article  Google Scholar 

  5. 5.

    Foxon, T. J. Transition pathways for a UK low carbon electricity future. Energy Policy 52, 10–24 (2013).

    Article  Google Scholar 

  6. 6.

    Hertwich, E. G. et al. Integrated life-cycle assessment of electricity-supply scenarios confirms global environmental benefit of low-carbon technologies. Proc. Natl Acad. Sci. USA 112, 6277–6282 (2015).

    CAS  Article  Google Scholar 

  7. 7.

    McCollum, D. L. et al. Connecting the sustainable development goals by their energy inter-linkages. Environ. Res. Lett. 13, 033006 (2018).

    Article  Google Scholar 

  8. 8.

    Liu, J. et al. Systems integration for global sustainability. Science 347, 1258832 (2015).

    Article  CAS  Google Scholar 

  9. 9.

    Hoekstra, A. Y. & Wiedmann, T. O. Humanity’s unsustainable environmental footprint. Science 344, 1114–1117 (2014).

    CAS  Article  Google Scholar 

  10. 10.

    Plevin, R. J., Delucchi, M. A. & Creutzig, F. Using attributional life cycle assessment to estimate climate-change mitigation benefits misleads policy makers. J. Ind. Ecol. 18, 73–83 (2014).

    Article  Google Scholar 

  11. 11.

    Fischer-Kowalski, M. & Weisz, H. Society as hybrid between material and symbolic realms. Adv. Hum. Ecol. 8, 215–251 (1999).

    Google Scholar 

  12. 12.

    González de Molina, M. & Toledo, V. M. The Social Metabolism: A Socio-Ecological Theory of Historical Change (Springer, Cham, 2014).

  13. 13.

    Weisz, H. The probability of the improbable: society–nature coevolution. Geogr. Ann. Ser. B 93, 325–336 (2011).

    Article  Google Scholar 

  14. 14.

    Weisz, H., Suh, S. & Graedel, T. E. Industrial ecology: the role of manufactured capital in sustainability. Proc. Natl Acad. Sci. USA 112, 6260–6264 (2015).

    CAS  Article  Google Scholar 

  15. 15.

    Krausmann, F. et al. Global socioeconomic material stocks rise 23-fold over the 20th century and require half of annual resource use. Proc. Natl Acad. Sci. USA 114, 1880–1885 (2017).

    CAS  Article  Google Scholar 

  16. 16.

    Pauliuk, S. & Müller, D. B. The role of in-use stocks in the social metabolism and in climate change mitigation. Glob. Environ. Change 24, 132–142 (2014).

    Article  Google Scholar 

  17. 17.

    Haberl, H., Wiedenhofer, D., Erb, K.-H., Görg, C. & Krausmann, F. The material stock–flow–service nexus: a new approach for tackling the decoupling conundrum. Sustainability 9, 1049 (2017).

    Article  CAS  Google Scholar 

  18. 18.

    Pauliuk, S. & Hertwich, E. G. Socioeconomic metabolism as paradigm for studying the biophysical basis of human societies. Ecol. Econ. 119, 83–93 (2015).

    Article  Google Scholar 

  19. 19.

    Lejano, R. P. & Stokols, D. Social ecology, sustainability, and economics. Ecol. Econ. 89, 1–6 (2013).

    Article  Google Scholar 

  20. 20.

    Goodland, R. & Daly, H. Environmental sustainability: universal and non-negotiable. Ecol. Appl. 6, 1002–1017 (1996).

    Article  Google Scholar 

  21. 21.

    Daly, H. E. Economics in a full world. Sci. Am. 293, 78–85 (2005).

    Article  Google Scholar 

  22. 22.

    Fischer-Kowalski, M. et al. Methodology and indicators of economy-wide material flow accounting — state of the art and reliability across sources. J. Ind. Ecol. 15, 855–876 (2011).

    Article  Google Scholar 

  23. 23.

    Fischer-Kowalski, M. Society’s metabolism: the intellectual history of materials flow analysis, part I, 1860–1970. J. Ind. Ecol. 2, 107–136 (1998).

    Article  Google Scholar 

  24. 24.

    Christensen, P. Classical roots for a modern materials-energy analysis. Ecol. Modell. 38, 75–89 (1987).

    Article  Google Scholar 

  25. 25.

    Cleveland, C. J. Biophysical economics: historical perspective and current research trends. Ecol. Modell. 38, 47–73 (1987).

    Article  Google Scholar 

  26. 26.

    Martinez-Alier, J. Ecological Economics: Energy, Environment and Society (Blackwell, Oxford, UK, Cambridge, USA, 1987).

  27. 27.

    Dunlap, R. E. & Catton, W. R. Struggling with human exemptionalism: the rise, decline and revitalization of environmental sociology. Am. Sociol. 25, 5–30 (1994).

    Article  Google Scholar 

  28. 28.

    Røpke, I. Trends in the development of ecological economics from the late 1980s to the early 2000s. Ecol. Econ. 55, 262–290 (2005).

    Article  Google Scholar 

  29. 29.

    Martinez-Alier, J., Munda, G. & O’Neill, J. in The Economics of Nature and the Nature of Economics (eds Cleveland, C. J., Stern, D. I. & Costanza, R.) 34–56 (Edward Elgar, Cheltenham, UK, Northhampton, MA, 2001).

  30. 30.

    Varela, F. G., Maturana, H. R. & Uribe, R. Autopoiesis: the organization of living systems, its characterization and a model. Biosystems 5, 187–196 (1974).

    CAS  Article  Google Scholar 

  31. 31.

    Ulanowicz, R. E. Ecology, the Ascendent Perspective (Columbia Univ. Press, New York, 1997).

  32. 32.

    Holling, C. S. Resilience and stability of ecological systems. Annu. Rev. Ecol. Evol. Syst. 4, 1–23 (1973).

    Article  Google Scholar 

  33. 33.

    Bringezu, S., Fischer-Kowalski, M., Kleijn, R. & Palm, V. (eds) In Proc. ConAccount Workshop 21–23 January 1997, Leiden (Wuppertal Institute, Wuppertal, 1997).

  34. 34.

    Amate, J., Molina, M. Gde & Toledo, V. M. El metabolismo social. Historias, métodos y principales aportaciones. Revista Iberoamericana Econ. Ecol. 27, 30–152 (2017).

  35. 35.

    Wolman, A. The metabolism of cities. Sci. Am. 213, 179–190 (1965).

    CAS  Article  Google Scholar 

  36. 36.

    Boyden, S., Millar, S., Newcombe, K. & O’Neill, B. Ecology of a City and its People: The Case of Hong Kong (Austrian National Univ., Canberra, 1981).

  37. 37.

    von Thünen, J. H. Der isolierte Staat in Beziehung auf Landwirtschaft und Nationalökonomie (Historisches Wirtschaftsarchiv, Paderborn, 2013).

  38. 38.

    Kennedy, C. A. et al. Energy and material flows of megacities. Proc. Natl Acad. Sci. USA 112, 5985–5990 (2015).

    CAS  Article  Google Scholar 

  39. 39.

    Lenzen, M. & Peters, G. M. How city dwellers affect their resource hinterland. J. Ind. Ecol. 14, 73–90 (2010).

    Article  Google Scholar 

  40. 40.

    Schäffler, A. & Swilling, M. Valuing green infrastructure in an urban environment under pressure — the Johannesburg case. Ecol. Econ. 86, 246–257 (2013).

    Article  Google Scholar 

  41. 41.

    Ramaswami, A., Russell, A. G., Culligan, P. J., Sharma, K. R. & Kumar, E. Meta-principles for developing smart, sustainable, and healthy cities. Science 352, 940–943 (2016).

    CAS  Article  Google Scholar 

  42. 42.

    Athanassiadis, A. et al. Comparing a territorial-based and a consumption-based approach to assess the local and global environmental performance of cities. J. Clean. Prod. 173, 112–123 (2018).

    Article  Google Scholar 

  43. 43.

    Kennedy, C., Pincetl, S. & Bunje, P. The study of urban metabolism and its applications to urban planning and design. Environ. Pollut. 159, 1965–1973 (2011).

    CAS  Article  Google Scholar 

  44. 44.

    Zhang, Y., Yang, Z. & Yu, X. Urban metabolism: a review of current knowledge and directions for future study. Environ. Sci. Technol. 49, 11247–11263 (2015).

    CAS  Article  Google Scholar 

  45. 45.

    Gandy, M. Rethinking urban metabolism: water, space and the modern city. City 8, 363–379 (2004).

    Article  Google Scholar 

  46. 46.

    Newell, J. P. & Cousins, J. J. The boundaries of urban metabolism: towards a political-industrial ecology. Prog. Hum. Geogr. 39, 702–728 (2015).

    Article  Google Scholar 

  47. 47.

    Beloin-Saint-Pierre, D. et al. A review of urban metabolism studies to identify key methodological choices for future harmonization and implementation. J. Clean. Prod. 163, S223–S240 (2017).

    Article  Google Scholar 

  48. 48.

    Georgescu-Roegen, N. The Entropy Law and the Economic Process (Harvard Univ. Press, Cambridge, USA, 1971).

  49. 49.

    Giampietro, M., Mayumi, K. & Sorman, A. H. The Metabolic Pattern of Societies: Where Economists Fall Short (Routledge, London, 2012).

  50. 50.

    Gerber, J.-F. & Scheidel, A. In search of substantive economics: comparing today’s two major socio-metabolic approaches to the economy — MEFA and MuSIASEM. Ecol. Econ. 144, 186–194 (2018).

    Article  Google Scholar 

  51. 51.

    Giampietro, M., Mayumi, K. & Ramos-Martin, J. Multi-scale integrated analysis of societal and ecosystem metabolism (MuSIASEM): theoretical concepts and basic rationale. Energy 34, 313–322 (2009).

    Article  Google Scholar 

  52. 52.

    Ravera, F. et al. Pathways of rural change: an integrated assessment of metabolic patterns in emerging ruralities. Environ. Dev. Sustain. 16, 811–820 (2014).

    Article  Google Scholar 

  53. 53.

    Silva-Macher, J. C. A metabolic profile of Peru: an application of multi-scale integrated analysis of societal and ecosystem metabolism (MuSIASEM) to the mining sector’s exosomatic energy flows. J. Ind. Ecol. 20, 1072–1082 (2016).

    Article  Google Scholar 

  54. 54.

    Chifari, R., Lo Piano, S., Bukkens, S. G. F. & Giampietro, M. A holistic framework for the integrated assessment of urban waste management systems. Ecol. Indic. 94, 24–36 (2016).

    Article  Google Scholar 

  55. 55.

    Giampietro, M., Aspinall, R. J., Ramos-Martin, J. & Bukkens, S. G. F. Resource Accounting for Sustainability Assessment: The Nexus between Energy, Food, Water and Land Use (Routledge, London, 2014).

  56. 56.

    Lomas, P. L. & Giampietro, M. Environmental accounting for ecosystem conservation: linking societal and ecosystem metabolisms. Ecol. Modell. 346, 10–19 (2017).

    Article  Google Scholar 

  57. 57.

    Boulding, K. in Steady State Economics (ed. Daly, H. E.) 121–132 (W. H. Freeman, San Francisco, 1972).

  58. 58.

    Ayres, R. U. & Kneese, A. V. Production, consumption, and externalities. Am. Econ. Rev. 59, 282–297 (1969).

    Google Scholar 

  59. 59.

    Odum, H. T. Environment, Power and Society (Wiley-Interscience, New York, 1971).

  60. 60.

    Dale, M., Krumdieck, S. & Bodger, P. Global energy modelling — a biophysical approach (GEMBA) part 1: an overview of biophysical economics. Ecol. Econ. 73, 152–157 (2012).

    Article  Google Scholar 

  61. 61.

    Cleveland, C. J., Costanza, R., Hall, C. A. S. & Kaufmann, R. Energy and the US economy: a biophysical perspective. Science 225, 890–897 (1984).

    CAS  Article  Google Scholar 

  62. 62.

    Lambert, J. G., Hall, C. A. S., Balogh, S., Gupta, A. & Arnold, M. Energy, EROI and quality of life. Energy Policy 64, 153–167 (2014).

    Article  Google Scholar 

  63. 63.

    Gupta, A. K. & Hall, C. A. S. A review of the past and current state of EROI data. Sustainability 3, 1796–1809 (2011).

    Article  Google Scholar 

  64. 64.

    Hall, C. A. S. & Klitgaard, K. A. Energy and the Wealth of Nations: An Introduction to Biophysical Economics (Springer, New York, 2017).

  65. 65.

    Kümmel, R. The Second Law of Economics, Energy, Entropy and the Origins of Wealth (Springer, New York, 2011).

  66. 66.

    Hall, C., Lindenberger, D., Kümmel, R., Kroeger, T. & Eichhorn, W. The need to reintegrate the natural sciences with economics. BioScience 51, 663–673 (2001).

    Article  Google Scholar 

  67. 67.

    Hall, C. A. S., Balogh, S. & Murphy, D. J. R. What is the minimum EROI that a sustainable society must have? Energies 2, 25–47 (2009).

    Article  Google Scholar 

  68. 68.

    King, L. C. & van den Bergh, J. C. J. M. Implications of net energy-return-on-investment for a low-carbon energy transition. Nat. Energy 3, 334–340 (2018).

    CAS  Article  Google Scholar 

  69. 69.

    Odum, H. T. Environmental Accounting, EMERGY and Environmental Decision Making (Wiley, Chichester, 1996).

  70. 70.

    Geng, Y., Sarkis, J., Ulgiati, S. & Zhang, P. Measuring China’s circular economy. Science 339, 1526–1527 (2013).

    CAS  Article  Google Scholar 

  71. 71.

    Yang, Z. F. et al. Solar energy evaluation for Chinese economy. Energy Policy 38, 875–886 (2010).

    Article  Google Scholar 

  72. 72.

    Ayres, R. U., Ayres, L. W. & Warr, B. Exergy, power and work in the US economy, 1900–1998. Energy 28, 219–273 (2003).

    Article  Google Scholar 

  73. 73.

    Sousa, T. et al. The need for robust, consistent methods in societal exergy accounting. Ecol. Econ. 141, 11–21 (2017).

    Article  Google Scholar 

  74. 74.

    Romero, J. C. & Linares, P. Exergy as a global energy sustainability indicator. A review of the state of the art. Renew. Sustain. Energy Rev. 33, 427–442 (2014).

    Article  Google Scholar 

  75. 75.

    Ayres, R. U. & Ayres, L. W. Accounting for Resources, 1: Economy-Wide Applications of Mass-Balance Principles to Materials and Waste (Edward Elgar, Cheltenham, UK, Northhampton, MA, 1998).

  76. 76.

    Baccini, P. & Brunner, P. H. Metabolism of the Anthroposphere (Springer-Verlag, Berlin, 1991).

  77. 77.

    Moriguchi, Y. Material flow indicators to measure progress toward a sound material-cycle society. J. Mater. Cycles Waste Manag. 9, 112–120 (2007).

    Article  Google Scholar 

  78. 78.

    Baccini, P. & Bader, H.-P. Regionaler Stoffhaushalt (Spektrum Akademischer Verlag, Heidelberg, 1986).

  79. 79.

    Krausmann, F., Schandl, H., Eisenmenger, N., Giljum, S. & Jackson, T. Material flow accounting: measuring global material use for sustainable development. Annu. Rev. Environ. Resour. 42, 647–675 (2017).

    Article  Google Scholar 

  80. 80.

    Giljum, S., Dittrich, M., Lieber, M. & Lutter, S. Global patterns of material flows and their socio-economic and environmental implications: a MFA study on all countries world-wide from 1980 to 2009. Resources 3, 319–339 (2014).

    Article  Google Scholar 

  81. 81.

    Dong, L. et al. Material flows and resource productivity in China, South Korea and Japan from 1970 to 2008: a transitional perspective. J. Clean. Prod. 141, 1164–1177 (2017).

    Article  Google Scholar 

  82. 82.

    Steinberger, J. K., Krausmann, F., Getzner, M., Schandl, H. & West, J. Development and dematerialization: an international study. PLoS ONE 8, e70385 (2013).

    CAS  Article  Google Scholar 

  83. 83.

    Chen, M. & Graedel, T. E. A half-century of global phosphorus flows, stocks, production, consumption, recycling, and environmental impacts. Glob. Environ. Change 36, 139–152 (2016).

    Article  Google Scholar 

  84. 84.

    Huang, C.-L., Vause, J., Ma, H.-W. & Yu, C.-P. Using material/substance flow analysis to support sustainable development assessment: a literature review and outlook. Resour. Conserv. Recycl. 68, 104–116 (2012).

    Article  Google Scholar 

  85. 85.

    Leontief, W. Environmental repercussions and the economic structure: an input–output approach. Rev. Econ. Stat. 52, 262–271 (1970).

    Article  Google Scholar 

  86. 86.

    Daly, H. E. On economics as a life science. J. Polit. Econ. 76, 392–406 (1968).

    Article  Google Scholar 

  87. 87.

    Tukker, A. et al. Towards robust, authoritative assessments of environmental impacts embodied in trade: current state and recommendations. J. Ind. Ecol. 22, 585–598 (2018).

    Article  Google Scholar 

  88. 88.

    Malik, A., McBain, D., Wiedmann, T. O., Lenzen, M. & Murray, J. Advancements in input–output models and indicators for consumption-based accounting: MRIO models for consumption-based accounting. J. Ind. Ecol. (2018).

  89. 89.

    Bullard, I. & Herendeen, R. A. The energy cost of goods and services. Energy Policy 3, 268–278 (1975).

    Article  Google Scholar 

  90. 90.

    Bullard, C. W., Penner, P. S. & Pilati, D. A. Net energy analysis: handbook for combining process and input–output analysis. Resour. Energy 1, 267–313 (1978).

    Article  Google Scholar 

  91. 91.

    Wood, R., Stadler, K., Bulavskaya, T., Giljum, S. & Lutter, S. Growth in environmental footprints and environmental impacts embodied in trade: resource efficiency indicators from EXIOBASE3. J. Ind. Ecol. 22, 553–564 (2018).

    Article  Google Scholar 

  92. 92.

    Plank, B., Eisenmenger, N., Schaffartzik, A. & Wiedenhofer, D. International trade drives global resource use: a structural decomposition analysis of raw material consumption from 1990–2010. Environ. Sci. Technol. 52, 4190–4198 (2018).

    CAS  Article  Google Scholar 

  93. 93.

    Meng, J. et al. The rise of south–south trade and its effect on global CO2 emissions. Nat. Commun. 9, 1871 (2018).

    Article  CAS  Google Scholar 

  94. 94.

    Wiedmann, T. & Lenzen, M. Environmental and social footprints of international trade. Nat. Geosci. 11, 314–321 (2018).

    CAS  Article  Google Scholar 

  95. 95.

    Wackernagel, M. et al. Tracking the ecological overshoot of the human economy. Proc. Natl Acad. Sci. USA 99, 9266–9271 (2002).

    CAS  Article  Google Scholar 

  96. 96.

    Guinée, J. B. & Heijungs, R. In Kirk-Othmer Encyclopedia of Chemical Technology (Wiley, 2015).

  97. 97.

    Hellweg, S. & Canals, L. Mi Emerging approaches, challenges and opportunities in life cycle assessment. Science 344, 1109–1113 (2014).

    CAS  Article  Google Scholar 

  98. 98.

    Zamagni, A., Guinée, J., Heijungs, R., Masoni, P. & Raggi, A. Lights and shadows in consequential LCA. Int. J. Life Cycle Assess. 17, 904–918 (2012).

    Article  Google Scholar 

  99. 99.

    Earles, J. M. & Halog, A. Consequential life cycle assessment: a review. Int. J. Life Cycle Assess. 16, 445–453 (2011).

    Article  Google Scholar 

  100. 100.

    Pauliuk, S., Arvesen, A., Stadler, K. & Hertwich, E. G. Industrial ecology in integrated assessment models. Nat. Clim. Change 7, 13–20 (2017).

    Article  Google Scholar 

  101. 101.

    Crutzen, P. J. Geology of mankind. Nature 415, 23–23 (2002).

    CAS  Article  Google Scholar 

  102. 102.

    Steffen, W. et al. Planetary boundaries: guiding human development on a changing planet. Science 347, 1259855–1259855 (2015).

    Article  CAS  Google Scholar 

  103. 103.

    IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

  104. 104.

    Johnson, C. N. et al. Biodiversity losses and conservation responses in the Anthropocene. Science 356, 270–275 (2017).

    CAS  Article  Google Scholar 

  105. 105.

    Lenton, T. M., Pichler, P.-P. & Weisz, H. Revolutions in energy input and material cycling in Earth history and human history. Earth Syst. Dyn. 7, 353–370 (2016).

    Article  Google Scholar 

  106. 106.

    Schandl, H. et al. Global material flows and resource productivity: forty years of evidence. J. Ind. Ecol. 22, 827–838 (2017).

    Article  Google Scholar 

  107. 107.

    Ehrlich, P. R. The Population Bomb: Population Control or Race to Oblivion? (Sierra Club, Ballantine Books, New York, 1968).

  108. 108.

    York, R., Rosa, E. A. & Dietz, T. STIRPAT, IPAT and ImPACT: analytic tools for unpacking the driving forces of environmental impacts. Ecol. Econ. 46, 351–365 (2003).

    Article  Google Scholar 

  109. 109.

    Moran, D. D., Wackernagel, M., Kitzes, J. A., Goldfinger, S. H. & Boutaud, A. Measuring sustainable development — nation by nation. Ecol. Econ. 64, 470–474 (2008).

    Article  Google Scholar 

  110. 110.

    Steinberger, J. K., Timmons Roberts, J., Peters, G. P. & Baiocchi, G. Pathways of human development and carbon emissions embodied in trade. Nat. Clim. Change 2, 81–85 (2012).

    CAS  Article  Google Scholar 

  111. 111.

    Dietz, T., Rosa, E. A. & York, R. Environmentally efficient well-being: Is there a Kuznets curve? Appl. Geogr. 32, 21–28 (2012).

    Article  Google Scholar 

  112. 112.

    Ayres, R. U. & Warr, B. The Economic Growth Engine: How Energy And Work Drive Material Prosperity (Edward Elgar, Cheltenham, UK, Northhampton, MA, 2009).

  113. 113.

    Warr, B. & Ayres, R. U. Useful work and information as drivers of economic growth. Ecol. Econ. 73, 93–102 (2012).

    Article  Google Scholar 

  114. 114.

    Zhang, C., Chen, W.-Q. & Ruth, M. Measuring material efficiency: a review of the historical evolution of indicators, methodologies and findings. Resour. Conserv. Recycl. 132, 79–92 (2018).

    Article  Google Scholar 

  115. 115.

    Decoupling Natural Resource Use And Environmental Impacts From Economic Growth (United Nations Environment Programme, 2011).

  116. 116.

    Pothen, F. & Schymura, M. Bigger cakes with fewer ingredients? A comparison of material use of the world economy. Ecol. Econ. 109, 109–121 (2015).

    Article  Google Scholar 

  117. 117.

    Shao, Q., Schaffartzik, A., Mayer, A. & Krausmann, F. The high ‘price’ of dematerialization: a dynamic panel data analysis of material use and economic recession. J. Clean. Prod. 167, 120–132 (2017).

    Article  Google Scholar 

  118. 118.

    Costanza, R. et al. Development: time to leave GDP behind. Nature 505, 283–285 (2014).

    Article  Google Scholar 

  119. 119.

    Bringezu, S. et al. Multi-scale governance of sustainable natural resource use — challenges and opportunities for monitoring and institutional development at the national and global level. Sustainability 8, 778 (2016).

    Article  Google Scholar 

  120. 120.

    Krausmann, F., Fischer‐Kowalski, M., Schandl, H. & Eisenmenger, N. The global sociometabolic transition. J. Ind. Ecol. 12, 637–656 (2008).

    Article  Google Scholar 

  121. 121.

    Steinberger, J. K., Krausmann, F. & Eisenmenger, N. Global patterns of materials use: a socioeconomic and geophysical analysis. Ecol. Econ. 69, 1148–1158 (2010).

    Article  Google Scholar 

  122. 122.

    Wiedmann, T. O. et al. The material footprint of nations. Proc. Natl Acad. Sci. USA 112, 6271–6276 (2015).

    CAS  Article  Google Scholar 

  123. 123.

    Muradian, R., Walter, M. & Martinez-Alier, J. Global transformations, social metabolism and the dynamics of socio-environmental conflicts. Glob. Environ. Change 22(Spec. Issue), 559–794 (2012).

    Article  Google Scholar 

  124. 124.

    Simas, M., Pauliuk, S., Wood, R., Hertwich, E. G. & Stadler, K. Correlation between production and consumption-based environmental indicators. Ecol. Indic. 76, 317–323 (2017).

    Article  Google Scholar 

  125. 125.

    Steinberger, J. K. & Krausmann, F. Material and energy productivity. Environ. Sci. Technol. 45, 1169–1176 (2011).

    CAS  Article  Google Scholar 

  126. 126.

    Görg, C. et al. Challenges for social-ecological transformations: contributions from social and political ecology. Sustainability 9, 1045 (2017).

    Article  Google Scholar 

  127. 127.

    O’Neill, D. W., Fanning, A. L., Lamb, W. F. & Steinberger, J. K. A good life for all within planetary boundaries. Nat. Sustain. 1, 88–95 (2018).

    Article  Google Scholar 

  128. 128.

    Bringezu, S. Possible target corridor for sustainable use of global material resources. Resources 4, 25–54 (2015).

    Article  Google Scholar 

  129. 129.

    Ghisellini, P., Cialani, C. & Ulgiati, S. A review on circular economy: the expected transition to a balanced interplay of environmental and economic systems. J. Clean. Prod. 114, 11–32 (2016).

    Article  Google Scholar 

  130. 130.

    McDowall, W. et al. Circular economy policies in china and europe: circular economy policies in China and Europe. J. Ind. Ecol. 21, 651–661 (2017).

    Article  Google Scholar 

  131. 131.

    Björklund, A. & Finnveden, G. Recycling revisited — life cycle comparisons of global warming impact and total energy use of waste management strategies. Resour. Conserv. Recycl. 44, 309–317 (2005).

    Article  Google Scholar 

  132. 132.

    Reck, B. K. & Graedel, T. E. Challenges in metal recycling. Science 337, 690–695 (2012).

    CAS  Article  Google Scholar 

  133. 133.

    Graedel, T. E., Harper, E. M., Nassar, N. T. & Reck, B. K. On the materials basis of modern society. Proc. Natl Acad. Sci. USA 112, 6295–6300 (2015).

    CAS  Article  Google Scholar 

  134. 134.

    Ciacci, L., Reck, B. K., Nassar, N. T. & Graedel, T. E. Lost by design. Environ. Sci. Technol. 49, 9443–9451 (2015).

    CAS  Article  Google Scholar 

  135. 135.

    Pauliuk, S., Milford, R. L., Müller, D. B. & Allwood, J. M. The steel scrap age. Environ. Sci. Technol. 47, 3448–3454 (2013).

    CAS  Article  Google Scholar 

  136. 136.

    Wang, P., Li, W. & Kara, S. Dynamic life cycle quantification of metallic elements and their circularity, efficiency, and leakages. J. Clean. Prod. 174, 1492–1502 (2018).

    CAS  Article  Google Scholar 

  137. 137.

    Graedel, T. E. et al. What do we know about metal recycling rates? J. Ind. Ecol. 15, 355–366 (2011).

    CAS  Article  Google Scholar 

  138. 138.

    Haas, W., Krausmann, F., Wiedenhofer, D. & Heinz, M. How circular is the global economy? An assessment of material flows, waste production, and recycling in the European Union and the world in 2005. J. Ind. Ecol. 19, 765–777 (2015).

    Article  Google Scholar 

  139. 139.

    Pauliuk, S. Critical appraisal of the circular economy standard BS 8001:2017 and a dashboard of quantitative system indicators for its implementation in organizations. Resour. Conserv. Recycl. 129, 81–92 (2018).

    Article  Google Scholar 

  140. 140.

    Mayer, A., Haas, W. & Wiedenhofer, D. How countries’ resource use history matters for human well-being — an investigation of global patterns in cumulative material flows from 1950 to 2010. Ecol. Econ. 134, 1–10 (2017).

    Article  Google Scholar 

  141. 141.

    Porter, M., Stern, S. & Green, M. Social Progress Index 2017 (Social Progress Imperative, 2017).

  142. 142.

    Costa, L., Rybski, D. & Kropp, J. P. A human development framework for CO2 reductions. PLoS ONE 6, e29262 (2011).

    CAS  Article  Google Scholar 

  143. 143.

    Lamb, W. F. et al. Transitions in pathways of human development and carbon emissions. Environ. Res. Lett. 9, 014011 (2014).

    Article  CAS  Google Scholar 

  144. 144.

    Dearing, J. A. et al. Safe and just operating spaces for regional social-ecological systems. Glob. Environ. Change 28, 227–238 (2014).

    Article  Google Scholar 

  145. 145.

    Measuring Material Flows and Resource Productivity. Volume I. The OECD Guide (Organisation for Economic Co-Operation and Development, 2008).

  146. 146.

    Liao, W., Heijungs, R. & Huppes, G. Thermodynamic analysis of human–environment systems: a review focused on industrial ecology. Ecol. Modell. 228, 76–88 (2012).

    Article  Google Scholar 

  147. 147.

    Liu, G., Bangs, C. E. & Müller, D. B. Stock dynamics and emission pathways of the global aluminium cycle. Nat. Clim. Change 3, 338–342 (2012).

    Article  CAS  Google Scholar 

  148. 148.

    Sandberg, N. H. et al. Dynamic building stock modelling: application to 11 European countries to support the energy efficiency and retrofit ambitions of the EU. Energy Build. 132, 26–38 (2016).

    Article  Google Scholar 

  149. 149.

    Hertwich, E. G. & Peters, G. P. Carbon footprint of nations: a global, trade-linked analysis. Environ. Sci. Technol. 43, 6414–6420 (2009).

    CAS  Article  Google Scholar 

  150. 150.

    Peters, G. P., Minx, J. C., Weber, C. L. & Edenhofer, O. Growth in emission transfers via international trade from 1990 to 2008. Proc. Natl Acad. Sci. USA 108, 8903–8908 (2011).

    CAS  Article  Google Scholar 

  151. 151.

    Davis, S. J., Caldeira, K. & Matthews, H. D. Future CO2 emissions and climate change from existing energy infrastructure. Science 329, 1330–1333 (2010).

    CAS  Article  Google Scholar 

  152. 152.

    Raupach, M. R. et al. Sharing a quota on cumulative carbon emissions. Nat. Clim. Change 4, 873–879 (2014).

    CAS  Article  Google Scholar 

  153. 153.

    Seto, K. C., Golden, J. S., Alberti, M. & Turner, B. L. Sustainability in an urbanizing planet. Proc. Natl Acad. Sci. USA 114, 8935–8938 (2017).

    CAS  Article  Google Scholar 

  154. 154.

    Bretschger, L. & Smulders, S. Challenges for a sustainable resource use: uncertainty, trade, and climate policies. J. Environ. Econ. Manag. 64, 279–287 (2012).

    Article  Google Scholar 

  155. 155.

    Laner, D., Rechberger, H. & Astrup, T. Systematic evaluation of uncertainty in material flow analysis. J. Ind. Ecol. 18, 859–870 (2014).

    CAS  Article  Google Scholar 

  156. 156.

    Hertwich, E. G. Consumption and the rebound effect: an industrial ecology perspective. J. Ind. Ecol. 9, 85–98 (2005).

    Article  Google Scholar 

  157. 157.

    Ayres, R. U. & Simonis, U. E. Industrial Metabolism: Restructuring for Sustainable Development (United Nations Univ. Press, Tokyo, 1994).

  158. 158.

    Chertow, M., Lifset, R. & Yang, T. In Oxford Bibliographies in Ecology (2018).

  159. 159.

    Erb, K.-H. How a socio-ecological metabolism approach can help to advance our understanding of changes in land-use intensity. Ecol. Econ. 76, 8–14 (2012).

    Article  Google Scholar 

  160. 160.

    Turner, B. L., Lambin, E. F. & Reenberg, A. The emergence of land change science for global environmental change and sustainability. Proc. Natl Acad. Sci. USA 104, 20666–20671 (2007).

    CAS  Article  Google Scholar 

  161. 161.

    Allwood, J. M., Ashby, M. F., Gutowski, T. G. & Worrell, E. Material efficiency: a white paper. Resour. Conserv. Recycl. 55, 362–381 (2011).

    Article  Google Scholar 

  162. 162.

    Schandl, H. et al. Decoupling global environmental pressure and economic growth: scenarios for energy use, materials use and carbon emissions. J. Clean. Prod. 132, 45–56 (2016).

    CAS  Article  Google Scholar 

  163. 163.

    Duro, J. A., Schaffartzik, A. & Krausmann, F. Metabolic inequality and its impact on efficient contraction and convergence of international material resource use. Ecol. Econ. 145, 430–440 (2018).

    Article  Google Scholar 

  164. 164.

    Pichler, M., Schaffartzik, A., Haberl, H. & Görg, C. Drivers of society–nature relations in the Anthropocene and their implications for sustainability transformations. Curr. Opin. Environ. Sustain. 26–27, 32–36 (2017).

    Article  Google Scholar 

  165. 165.

    López, L. A., Arce, G., Morenate, M. & Zafrilla, J. E. How does income redistribution affect households’ material footprint? J. Clean. Prod. 153, 515–527 (2017).

    Article  Google Scholar 

  166. 166.

    Ahmed, N. M. Failing States, Collapsing Systems: Biophysical Triggers of Political Violence (Springer Nature, Cham, 2017).

  167. 167.

    Martinez-Alier, J. The Environmentalism of the Poor: A Study of Ecological Conflicts and Valuation (Edward Elgar, Cheltenham, UK, Northhampton, MA, 2002).

  168. 168.

    Pérez-Rincón, M., Vargas-Morales, J. & Crespo-Marín, Z. Trends in social metabolism and environmental conflicts in four Andean countries from 1970 to 2013. Sustain. Sci. 13, 635–648 (2018).

    Article  Google Scholar 

  169. 169.

    Simas, M., Goldsteijn, L., Huijbregts, Ma. J., Wood, R. & Hertwich, E. The “bad labor” footprint: quantifying the social impacts of globalization. Sustainability 6, 7514–7540 (2014).

    Article  Google Scholar 

  170. 170.

    Simas, M., Wood, R. & Hertwich, E. Labor embodied in trade. J. Ind. Ecol. 19, 343–356 (2015).

    Article  Google Scholar 

  171. 171.

    Giljum, S. & Eisenmenger, N. North–south trade and the distribution of environmental goods and burdens: a biophysical perspective. J. Environ. Dev. 13, 73–100 (2004).

    Article  Google Scholar 

  172. 172.

    Hornborg, A. & Jorgensen, A. K. International Trade and Environmental Justice: Toward a Global Political Ecology (Nova Science, Hauppauge, 2010).

  173. 173.

    Hornborg, A. & Martinez-Alier, J. Ecologically unequal exchange and ecological debt. J. Polit. Ecol. 23, 328–333 (2016).

    Google Scholar 

  174. 174.

    Rotmans, J. & Fischer-Kowalski, M. Conceptualizing, observing and influencing socio-ecological transitions. Ecol. Soc. 14, 3 (2009).

    Google Scholar 

  175. 175.

    Geels, F. W., Schwanen, T., Sorrell, S., Jenkins, K. & Sovacool, B. K. Reducing energy demand through low carbon innovation: a sociotechnical transitions perspective and thirteen research debates. Energy Res. Soc. Sci. 40, 23–35 (2018).

    Article  Google Scholar 

  176. 176.

    Haberl, H., Fischer-Kowalski, M., Krausmann, F., Martinez-Alier, J. & Winiwarter, V. A socio-metabolic transition towards sustainability? Challenges for another great transformation. Sustain. Dev. 19, 1–14 (2011).

    Article  Google Scholar 

  177. 177.

    Fischer-Kowalski, M. & Hüttler, W. Society’s metabolism: the intellectual history of materials flow analysis, part II, 1970–1998. J. Ind. Ecol. 2, 107–136 (1998).

    Article  Google Scholar 

  178. 178.

    Shiklomanov, I. A. Appraisal and assessment of world water resources. Water Int. 25, 11–32 (2000).

    Article  Google Scholar 

  179. 179.

    Krausmann, F. et al. Growth in global materials use, GDP and population during the 20th century. Ecol. Econ. 68, 2696–2705 (2009).

    Article  Google Scholar 

  180. 180.

    Krausmann, F., Lauk, C., Haas, W. & Wiedenhofer, D. From resource extraction to outflows of wastes and emissions: the socioeconomic metabolism of the global economy, 1900–2015. Glob. Environ. Change 52, 131–140 (2018).

    Article  Google Scholar 

  181. 181.

    Riley, J. C. Estimates of regional and global life expectancy, 1800–2001. Popul. Dev. Rev. 31, 537–543 (2005).

    Article  Google Scholar 

  182. 182.

    World Development Indicators (The World Bank, accessed 22 August 2017);

  183. 183.

    Bolt, J. & van Zanden, J. L. The Maddison Project: collaborative research on historical national accounts. Econ. History Rev. 67, 627–651 (2014).

    Google Scholar 

  184. 184.

    De Stercke, S. Dynamics of Energy Systems: A Useful Perspective IIASA Interim Report No. IR-14-013 (International Institute for Applied Systems Analysis, 2014).

  185. 185.

    Marland, G., Boden, T. A. & Andres, R. J. Global, Regional, and National Fossil-Fuel CO 2 Emissions (Carbon Dioxide Information Analysis Center, Environmental Sciences Division, Oak Ridge National Laboratory, 2016).

  186. 186.

    Cao, Z., Shen, L., Løvik, A. N., Müller, D. B. & Liu, G. Elaborating the history of our cementing societies: an in-use stock perspective. Environ. Sci. Technol. 51, 11468–11475 (2017).

    CAS  Article  Google Scholar 

Download references


We acknowledge research funding from the European Research Council ERC (MAT_STOCKS, grant 741950) and from the Austrian Science Fund FWF (projects MISO P27590 and GELUC P29130-G27). We thank M. Podovac for help with Figs. 1 and 2 and M. Niedertscheider for help with the maps in Fig. 3.

Author information




All authors contributed to reviewing and discussing literature and writing the article. H.H. and D.W. conceived Fig. 1. M.F.-K. conceived Fig. 2. F.K. and D.W. compiled data and drafted Fig. 3. D.W. compiled data and drafted Fig. 4. S.P. compiled data and drafted Fig. 5. D.W. and S.P. compiled data and drafted Fig. 6. H.H. structured the paper and discussions. All authors contributed to writing the text.

Corresponding author

Correspondence to Helmut Haberl.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Haberl, H., Wiedenhofer, D., Pauliuk, S. et al. Contributions of sociometabolic research to sustainability science. Nat Sustain 2, 173–184 (2019).

Download citation

Further reading


Quick links

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing