Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Air quality in megacity Delhi affected by countryside biomass burning

Abstract

South Asian megacities are strong sources of regional air pollution. Delhi is a key hotspot of health- and climate-impacting black carbon (BC) emissions, affecting environmental sustainability in densely populated northern India. Effective mitigation of BC impact is hampered by highly uncertain emission source estimates. Here, we use dual-carbon isotope fingerprints (δ13C/∆14C) of BC to constrain the seasonal source variability in Delhi. These measurements show that lower BC concentrations in summer are predominantly from fossil fuel sources (~83%). However, large-scale open burning of post-harvest crop residue/wood in nearby rural regions is contributing to severe haze pollution in Delhi during winter and autumn (~42 ± 17%). Hence, the common conception that megacities affect their surroundings is here amended or seasonally reversed. Therefore, to combat the severe air pollution problems in Delhi and the environmental quality of northern India, current urban efforts need to be complemented with countryside regional mitigation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2: Radiocarbon (Δ14C) and stable carbon (δ13C) isotope signatures of black carbon (BC) in ambient PM2.5 collected over megacity Delhi in the Indo-Gangetic Plain, a hotspot for BC emissions over South Asia.
Fig. 3: Seasonal variability in sources of Delhi BC aerosols.
Fig. 4: Seasonal variability of the MODIS satellite-derived fire-count data along with cluster analysis of 5-day isentropic air mass back trajectories computed at an arrival height of 100 m for the receptor site in Delhi during the year 2011 (0.31 × 0.45o).

Similar content being viewed by others

Data availability

The observational data that support the findings of this study are available in the Bolin Centre Database (http://bolin.su.se/data/) and from the corresponding author upon request.

References

  1. Jerrett, M. Atmospheric science: the death toll from air-pollution sources. Nature 525, 330–331 (2015).

    Article  CAS  Google Scholar 

  2. Lelieveld, J., Evans, J., Fnais, M., Giannadaki, D. & Pozzer, A. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 525, 367–371 (2015).

    Article  CAS  Google Scholar 

  3. Gautam, R., Hsu, N. C., Kafatos, M. & Tsay, S. C. Influences of winter haze on fog/low cloud over the Indo-Gangetic plains. J. Geophys. Res. 112, D05207 (2007).

    Article  Google Scholar 

  4. Singh, R. P. & Kaskaoutis, D. G. Crop residue burning: a threat to south asian air quality. Trans. Am. Geophys. Union 95, 333–334 (2014).

    Article  Google Scholar 

  5. Kaskaoutis, D. G. et al. Effects of crop residue burning on aerosol properties, plume characteristics, and long-range transport over northern India. J. Geophys. Res. 119, 5424–5444 (2014).

    Google Scholar 

  6. Air Quality Guidelines: Global Update 2005 (World Health Organization, 2006).

  7. Beekmann, M. et al. In situ, satellite measurement and model evidence on the dominant regional contribution to fine particulate matter levels in the Paris megacity. Atmos. Chem. Phys. 15, 9577–9591 (2015).

    Article  CAS  Google Scholar 

  8. Sharma, S. et al. Breathing Cleaner Air: Ten Scalable Solutions for Indian Cities (World Sustainable Development Summit, New Delhi, 2016).

  9. Ramanathan, V. & Carmichael, G. Global and regional climate changes due to black carbon. Nat. Geosci. 1, 221–227 (2008).

    Article  CAS  Google Scholar 

  10. Bond, T. C. et al. Bounding the role of black carbon in the climate system: a scientific assessment. J. Geophys. Res. 118, 5380–5552 (2013).

    CAS  Google Scholar 

  11. Sehgal, M. & Gautam, S. K. Odd even story of Delhi traffic and air pollution. Int. J. Environ. Stud. 73, 170–172 (2016).

    Article  Google Scholar 

  12. Ramanathan, V. et al. Bending the curve: ten scalable solutions for carbon neutrality and climate stability. Collabra 2, 15 (2016).

    Article  Google Scholar 

  13. Shindell, D. et al. Climate, health, agricultural and economic impacts of tighter vehicle-emission standards. Nat. Clim. Change 1, 59–66 (2011).

    Article  CAS  Google Scholar 

  14. Menon, S., Hansen, J., Nazarenko, L. & Luo, Y. Climate effects of black carbon aerosols in China and India. Science 297, 2250–2253 (2002).

    Article  CAS  Google Scholar 

  15. Evan, A. T., Kossin, J. P., ‘Eddy’ Chung, C. & Ramanathan, V. Arabian Sea tropical cyclones intensified by emissions of black carbon and other aerosols. Nature 479, 94–97 (2011).

    Article  CAS  Google Scholar 

  16. Gustafsson, Ö. & Ramanathan, V. Convergence on climate warming by black carbon aerosols. Proc. Natl Acad. Sci. USA 113, 4243–4245 (2016).

    Article  CAS  Google Scholar 

  17. Bosch, C. et al. Source-diagnostic dual-isotope composition and optical properties of water-soluble organic carbon and elemental carbon in the South Asian outflow intercepted over the Indian Ocean. J. Geophys. Res. 119, 11743–11759 (2014).

    CAS  Google Scholar 

  18. Gustafsson, Ö. et al. Brown clouds over South Asia: biomass or fossil fuel combustion?. Science 323, 495–498 (2009).

    Article  CAS  Google Scholar 

  19. Budhavant, K. et al. Radiocarbon-based source apportionment of elemental carbon aerosols at two South Asian receptor observatories over a full annual cycle. Environ. Res. Lett. 10, 064004 (2015).

    Article  Google Scholar 

  20. Tiwari, S. et al. Diurnal and seasonal variations of black carbon and PM2.5 over New Delhi, India: influence of meteorology. Atmos. Res. 125–126, 50–62 (2013).

    Article  Google Scholar 

  21. Srinivas, B. & Sarin, M. M. PM2. 5, EC and OC in atmospheric outflow from the Indo-Gangetic Plain: temporal variability and aerosol organic carbon-to-organic mass conversion factor. Sci. Total Environ. 487, 196 (2014).

    Article  CAS  Google Scholar 

  22. Rastogi, N., Singh, A., Singh, D. & Sarin, M. Chemical characteristics of PM2. 5 at a source region of biomass burning emissions: evidence for secondary aerosol formation. Environ. Pollut. 184, 563–569 (2014).

    Article  CAS  Google Scholar 

  23. Bikkina, S. et al. Carbon isotope-constrained seasonality of carbonaceous aerosol sources from an urban location (Kanpur) in the Indo-Gangetic Plain. J. Geophys. Res. 122, 4903–4923 (2017).

    CAS  Google Scholar 

  24. Ram, K., Sarin, M. M. & Tripathi, S. N. Temporal trends in atmospheric PM2.5, PM10, elemental carbon, organic carbon, water-soluble organic carbon, and optical properties: impact of biomass burning emissions in the indo-gangetic plain. Environ. Sci. Technol. 46, 686–695 (2012).

    Article  CAS  Google Scholar 

  25. Arola, A. et al. Direct radiative effect by brown carbon over the Indo-Gangetic Plain. Atmos. Chem. Phys. 15, 12731–12740 (2015).

    Article  CAS  Google Scholar 

  26. Rengarajan, R., Sarin, M. & Sudheer, A. Carbonaceous and inorganic species in atmospheric aerosols during wintertime over urban and high-altitude sites in North India. J. Geophys. Res. 112, D21307 (2007).

    Article  Google Scholar 

  27. Venkataraman, C., Habib, G., Eiguren-Fernandez, A., Miguel, A. H. & Friedlander, S. K. Residential biofuels in South Asia: carbonaceous aerosol emissions and climate impacts. Science 307, 1454–1456 (2005).

    Article  CAS  Google Scholar 

  28. Kirillova, E. N. et al. 13C‐and 14C‐based study of sources and atmospheric processing of water‐soluble organic carbon (WSOC) in South Asian aerosols. J. Geophys. Res. 118, 614–626 (2013).

    CAS  Google Scholar 

  29. Yan, C. et al. Important fossil source contribution to brown carbon in Beijing during winter. Sci. Rep. 7, 43182 (2017).

    Article  Google Scholar 

  30. Widory, D. Combustibles, fuels and their combustion products: a view through carbon isotopes. Combust. Theor. Model. 10, 831–841 (2006).

    Article  CAS  Google Scholar 

  31. Cao, J.-J. et al. Stable carbon isotopes in aerosols from Chinese cities: influence of fossil fuels. Atmos. Environ. 45, 1359–1363 (2011).

    Article  CAS  Google Scholar 

  32. Agnihotri, R. et al. Stable carbon and nitrogen isotopic composition of bulk aerosols over India and northern Indian Ocean. Atmos. Environ. 45, 2828–2835 (2011).

    Article  CAS  Google Scholar 

  33. Andersson, A. et al. Regionally-varying combustion sources of the January 2013 severe haze events over eastern China. Environ. Sci. Technol. 49, 2038–2043 (2015).

    Article  CAS  Google Scholar 

  34. Marrapu, P. et al. Air quality in Delhi during the Commonwealth Games. Atmos. Chem. Phys. 14, 10619–10630 (2014).

    Article  Google Scholar 

  35. Badarinath, K., Kharol, S. K. & Sharma, A. R. Long-range transport of aerosols from agriculture crop residue burning in Indo-Gangetic Plains—a study using LIDAR, ground measurements and satellite data. J. Atmos. Sol. Terr. Phys. 71, 112–120 (2009).

    Article  Google Scholar 

  36. Bikkina, S. et al. Dual carbon isotope characterization of total organic carbon in wintertime carbonaceous aerosols from northern India. J. Geophys. Res. 121, 4797–4809 (2016).

    Article  CAS  Google Scholar 

  37. Liu, T. et al. Seasonal impact of regional outdoor biomass burning on air pollution in three Indian cities: Delhi, Bengaluru, and Pune. Atmos. Environ. 172, 83–92 (2018).

    Article  Google Scholar 

  38. Vadrevu, K. P., Ellicott, E., Badarinath, K. V. S. & Vermote, E. MODIS derived fire characteristics and aerosol optical depth variations during the agricultural residue burning season, north India. Environ. Pollut. 159, 1560–1569 (2011).

    Article  CAS  Google Scholar 

  39. Nair, V. S. et al. Wintertime aerosol characteristics over the Indo-Gangetic Plain (IGP): Impacts of local boundary layer processes and long-range transport. J. Geophys. Res. 112, D13205 (2007).

    Google Scholar 

  40. Gogoi, M. M., Suresh Babu, S., Krishna Moorthy, K., Manoj, M. R. & Chaubey, J. P. Absorption characteristics of aerosols over the northwestern region of India: distinct seasonal signatures of biomass burning aerosols and mineral dust. Atmos. Environ. 73, 92–102 (2013).

    Article  CAS  Google Scholar 

  41. Raatikainen, T. et al. The effect of boundary layer dynamics on aerosol properties at the Indo-Gangetic plains and at the foothills of the Himalayas. Atmos. Environ. 89, 548–555 (2014).

    Article  CAS  Google Scholar 

  42. Zhang, Y. L. et al. Fossil vs. non-fossil sources of fine carbonaceous aerosols in four Chinese cities during the extreme winter haze episode of 2013. Atmos. Chem. Phys. 15, 1299–1312 (2015).

    Article  Google Scholar 

  43. Liu, J. et al. Source apportionment and dynamic changes of carbonaceous aerosols during the haze bloom-decay process in China based on radiocarbon and organic molecular tracers. Atmos. Chem. Phys. 16, 2985–2996 (2016).

    Article  CAS  Google Scholar 

  44. Zhang, Y.-L. et al. Source apportionment of elemental carbon in beijing, china: insights from radiocarbon and organic marker measurements. Environ. Sci. Technol. 49, 8408–8415 (2015).

    Article  CAS  Google Scholar 

  45. Zhang, Y.-L. et al. Fossil and nonfossil sources of organic and elemental carbon aerosols in the outflow from northeast china. Environ. Sci. Technol. 50, 6284–6292 (2016).

    Article  CAS  Google Scholar 

  46. Chen, B. et al. Source forensics of black carbon aerosols from China. Environ. Sci. Technol. 47, 9102–9108 (2013).

    Article  CAS  Google Scholar 

  47. Fang, W. et al. Divergent evolution of carbonaceous aerosols during dispersal of east asian haze. Sci. Rep. 7, 10422 (2017).

    Article  Google Scholar 

  48. Fang, W. et al. Dual-isotope constraints on seasonally resolved source fingerprinting of black carbon aerosols in sites of the four emission hot spot regions of china. J. Geophys. Res. 123, 11735–11747 (2018).

    CAS  Google Scholar 

  49. Huang, R.-J. et al. High secondary aerosol contribution to particulate pollution during haze events in China. Nature 514, 218 (2014).

    Article  CAS  Google Scholar 

  50. Liu, J. et al. Source apportionment using radiocarbon and organic tracers for PM2. 5 carbonaceous aerosols in Guangzhou, South China: contrasting local- and regional-scale haze events. Environ. Sci. Technol. 48, 12002–12011 (2014).

    Article  CAS  Google Scholar 

  51. Birch, M. E. & Cary, R. A. Elemental carbon-based method for monitoring occupational exposures to particulate diesel exhaust. Aerosol. Sci. Technol. 25, 221–241 (1996).

    Article  CAS  Google Scholar 

  52. Winiger, P., Andersson, A., Yttri, K. E., Tunved, P. & Gustafsson, Ö. Isotope-based source apportionment of EC aerosol particles during winter high-pollution events at the zeppelin observatory, svalbard. Environ. Sci. Technol. 49, 11959–11966 (2015).

    Article  CAS  Google Scholar 

  53. Zencak, Z., Elmquist, M. & Gustafsson, Ö. Quantification and radiocarbon source apportionment of black carbon in atmospheric aerosols using the CTO-375 method. Atmos. Environ. 41, 7895–7906 (2007).

    Article  CAS  Google Scholar 

  54. Graven, H. D., Guilderson, T. P. & Keeling, R. F. Observations of radiocarbon in CO2 at seven global sampling sites in the Scripps flask network: Analysis of spatial gradients and seasonal cycles. J. Geophys. Res. 117, D02302 (2012).

    Google Scholar 

  55. Stein, A. et al. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Am. Meteorol. Soc. 96, 2059–2077 (2015).

    Article  Google Scholar 

  56. R Core Team. _R: A Language and Environment for Statistical Ccomputing_ (R Foundation for Statistical Computing, Vienna, 2013); http://www.R-project.org/.

Download references

Acknowledgements

This work was funded by the Swedish Research Council (FORMAS grant no. 214-2009-970), the Swedish Energy Agency (STEM grant no. 35450-2), and the Swedish Research Council VR (Distinguished Professor Grant no. 2017-01601). The authors gratefully acknowledge the NOAA Air Resources Laboratory (ARL) for the provision of the HYSPLIT transport and dispersion model and/or READY website (http://www.ready.noaa.gov) used in this study.

Author information

Authors and Affiliations

Authors

Contributions

O.G. and A.A. collaborated with S.T. for the Delhi year-round campaign. S.B. and E.K. performed the clean sample preparation of BC isolates for the dual-carbon isotopic composition. S.B., A.A. and O.G. wrote the paper with input from all co-authors. A.A. performed the error propagations and MCMC simulations.

Corresponding author

Correspondence to Örjan Gustafsson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–6, Supplementary Tables 1–2, Supplementary Notes, Supplementary References 1–6

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bikkina, S., Andersson, A., Kirillova, E.N. et al. Air quality in megacity Delhi affected by countryside biomass burning. Nat Sustain 2, 200–205 (2019). https://doi.org/10.1038/s41893-019-0219-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41893-019-0219-0

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene