Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Promises and perils of sand exploitation in Greenland


Ice flow dynamics of the Greenland ice sheet control the production of sediment. Future acceleration in glacial flow and ice sheet melt will amplify Greenland’s supply of sediment to the coastal zone. Globally, sand and gravel reserves are rapidly depleting while the demand is increasing, largely due to urban expansion, infrastructural improvements and the enhancement of coastal protection in response to climate change. Here, we show that an abundance of sand and gravel provides an opportunity for Greenland to become a global exporter of aggregates and relieve the increasing global demand. The changing Arctic conditions help pave a sustainable way for the country towards economic independence. This way, Greenland could benefit from the challenges brought by climate change. Such exploitation of sand requires careful assessment of the environmental impact and must be implemented in collaboration with the Greenlandic society.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Suspended sediment loads delivered by the GrIS.
Fig. 2: Drivers of global sand demand and local geomorphologic dynamics creating previously unknown sand resources in Greenland.
Fig. 3: Global sand shortage and market prices.

Similar content being viewed by others


  1. Rosing, M., Knudsen, R., Heinrich, J. & Rasmusen, L. To the Benefit of Greenland (University of Greenland Ilisimatusarfik, 2014).

  2. Sutherland, W. J. et al. A 2017 Horizon scan of emerging issues for global conservation and biological diversity. Trends Ecol. Evol. 32, 31–40 (2017).

    Article  Google Scholar 

  3. Rosen, J. Cold truths at the top of the world. Nature 532, 296–299 (2016).

    Article  CAS  Google Scholar 

  4. Number of Graduations, 2003–2017 UDXISC11D07 (Statbank Greenland, Statistics Greenland, 2012);

  5. Zeuthen, J. W. & Raftopoulos, M. Promises of hope or threats of domination: Chinese mining in Greenland. Extract. Ind. Soc. 5, 122–130 (2018).

    Article  Google Scholar 

  6. Stedman, A. & Green, K. P. Survey of Mining Companies 1–72 (Fraser Insititute Annual, 2017).

  7. Nuttall, M. Zero-tolerance, uranium and Greenland’s mining future. Polar J. 3, 368–383 (2013).

    Article  Google Scholar 

  8. Bendixen, M. & Kroon, A. Conceptualizing delta forms and processes in Arctic coastal environments. Earth Surf. Proc. Land. 42, 1227–1237 (2017).

    Article  Google Scholar 

  9. Bendixen, M. et al. Delta progradation in Greenland driven by increasing glacial mass loss. Nature 550, 101–104 (2017).

    Article  CAS  Google Scholar 

  10. Galloway, W. E. & Hobday, D. K. Terrigenous Clastic Depositional Systems: Applications to Fossil Fuel and Groundwater Resources (Springer Science and Business Media, 2012).

  11. Anthony, E. J. in Coastal Environments and Global Change (eds Masselink, G. & Gehrels, R.) Ch. 13, 299–237 (John Wiley and Sons, 2014).

  12. Storms, J. E. A., de Winter, I. L., Overeem, I., Drijkoningen, G. G. & Lykke-Andersen, H. The Holocene sedimentary history of the Kangerlussuaq Fjord-valley fill, West Greenland. Quaternary Sci. Rev. 35, 29–50 (2012).

    Article  Google Scholar 

  13. IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

  14. Kjeldsen, K. K. et al. Spatial and temporal distribution of mass loss from the Greenland Ice Sheet since AD 1900. Nature 528, 396–400 (2015).

    Article  CAS  Google Scholar 

  15. Khan, S. A. et al. Greenland ice sheet mass balance: a review. Rep. Prog. Phys. 78, 046801 (2015).

    Article  Google Scholar 

  16. Overeem, I. et al. Substantial export of suspended sediment to the global oceans from glacial erosion in Greenland. Nat. Geosci. 10, 859–863 (2017).

    Article  CAS  Google Scholar 

  17. Meyssignac, B., Fettweis, X., Chevrier, R. & Spada, G. Regional sea level changes for the twentieth and the twenty-first centuries induced by the regional variability in greenland ice sheet surface mass loss. J. Clim. 30, 2011–2028 (2017).

    Article  Google Scholar 

  18. Bjork, A. A. et al. An aerial view of 80 years of climate-related glacier fluctuations in southeast Greenland. Nat. Geosci. 5, 427–432 (2012).

    Article  Google Scholar 

  19. Syvitski, J. P. & Saito, Y. Morphodynamics of deltas under the influence of humans. Glob. Planet. Change 57, 261–282 (2007).

    Article  Google Scholar 

  20. Torres, A., Brandt, J., Lear, K. & Liu, J. G. A looming tragedy of the sand commons. Science 357, 970–971 (2017).

    Article  CAS  Google Scholar 

  21. IPCC Climate Change 2014: Impacts, Adaptation, and Vulnerability Ch. 21–30 (eds Field, C. B. et al.) (Cambridge Univ. Press, 2014).

  22. Krausmann, F. et al. Global socioeconomic material stocks rise 23-fold over the 20th century and require half of annual resource use. Proc. Natl Acad. Sci. USA 114, 1880–1885 (2017).

    Article  CAS  Google Scholar 

  23. Sverdrup, H. U., Koca, D. & Schlyter, P. A simple system dynamics model for the global production rate of sand, gravel, crushed rock and stone, market prices and long-term supply embedded into the WORLD6 model. Biophys. Econ. Res. Qual. 2, 8 (2017).

    Article  Google Scholar 

  24. Kohler, S. Aggregate Availability in California (2012).

  25. Danielsen, S. W., Kutznetzon, E. Environmental Impact and Sustainability in Aggregate Production and Use Vol. 7 (Springer, 2014).

  26. Ascensão, F. et al. Environmental challenges for the Belt and Road Initiative. Nat. Sustain. 1, 206–209 (2018).

    Article  Google Scholar 

  27. Brown, J. M. et al. The effectiveness of beach mega-nourishment, assessed over three management epochs. J. Environ. Manage. 184, 400–408 (2016).

    Article  Google Scholar 

  28. de Schipper, M. A. et al. Initial spreading of a mega feeder nourishment: Observations of the Sand Engine pilot project. Coast. Eng. 111, 23–38 (2016).

    Article  Google Scholar 

  29. Bendixen, M., Iversen, L. L. & Overeem, I. Greenland: build an economy on sand. Science 358, 879–879 (2017).

    CAS  Google Scholar 

  30. Boertmann, D. (ed.) Miljoe og raastoffer i Groenland (Aarhus Universitetsforlag, 2018).

  31. Barnhart, K. R., Miller, C. R., Overeem, I. & Kay, J. E. Mapping the future expansion of Arctic open water. Nat. Clim. Change 6, 280–285 (2015).

    Article  Google Scholar 

  32. Węsławski, J. M. et al. Climate change effects on Arctic fjord and coastal macrobenthic diversity—observations and predictions. Mar. Biodivers. 41, 71–85 (2011).

    Article  Google Scholar 

  33. Slagstad, D., Ellingsen, I. & Wassmann, P. Evaluating primary and secondary production in an Arctic Ocean void of summer sea ice: an experimental simulation approach. Prog. Oceanogr. 90, 117–131 (2011).

    Article  Google Scholar 

  34. Middelbo, A. B., Sejr, M. K., Arendt, K. E. & Møller, E. F. Impact of glacial meltwater on spatiotemporal distribution of copepods and their grazing impact in Young Sound NE, Greenland. Limnol. Oceanogr. 63, 322–336 (2018).

    Article  Google Scholar 

  35. Hawkings, J. et al. The Greenland Ice Sheet as a hot spot of phosphorus weathering and export in the Arctic. Glob. Biogeochem. Cycles 30, 191–210 (2016).

    Article  CAS  Google Scholar 

  36. Hawkings, J. R. et al. Ice sheets as a missing source of silica to the polar oceans. Nat. Commun. 8, 14198 (2017).

    Article  CAS  Google Scholar 

  37. Kanna, N. et al. Upwelling of macronutrients and dissolved inorganic carbon by a subglacial freshwater driven plume in Bowdoin Fjord, northwestern Greenland. J. Geophys. Res. Biogeosci. 123, 1666–1682 (2018).

    Article  Google Scholar 

  38. Meire, L. et al. Marine-terminating glaciers sustain high productivity in Greenland fjords. Glob. Change Biol. 23, 5344–5357 (2017).

    Article  Google Scholar 

  39. Beaugrand, G., Edwards, M., Brander, K., Luczak, C. & Ibanez, F. Causes and projections of abrupt climate-driven ecosystem shifts in the North Atlantic. Ecol. Lett. 11, 1157–1168 (2008).

    Article  Google Scholar 

  40. Beaugrand, G., Reid, P. C., Ibanez, F., Lindley, J. A. & Edwards, M. Reorganization of North Atlantic marine copepod biodiversity and climate. Science 296, 1692–1694 (2002).

    Article  CAS  Google Scholar 

  41. Greene, C. H., Pershing, A. J., Cronin, T. M. & Ceci, N. Arctic climate change and its impacts on the ecology of the North Atlantic. Ecology 89, S24–S38 (2008).

    Article  Google Scholar 

  42. Manap, N. & Voulvoulis, N. Environmental management for dredging sediments: the requirement of developing nations. J. Environ. Manage. 147, 338–348 (2015).

    Article  Google Scholar 

  43. Erftemeijer, P. L. & Lewis, R. R. R. III Environmental impacts of dredging on seagrasses: a review. Mar. Pollut. Bull. 52, 1553–1572 (2006).

    Article  CAS  Google Scholar 

  44. Erftemeijer, P. L., Riegl, B., Hoeksema, B. W. & Todd, P. A. Environmental impacts of dredging and other sediment disturbances on corals: a review. Mar. Pollut. Bull. 64, 1737–1765 (2012).

    Article  CAS  Google Scholar 

  45. Krause-Jensen, D. & Duarte, C. M. Expansion of vegetated coastal ecosystems in the future Arctic. Front. Mar. Sci. 1, 77 (2014).

    Article  Google Scholar 

  46. Duarte, C. M., Losada, I. J., Hendriks, I. E., Mazarrasa, I. & Marbà, N. The role of coastal plant communities for climate change mitigation and adaptation. Nat. Clim. Change 3, 961–968 (2013).

    Article  CAS  Google Scholar 

  47. Ricciardi, A. et al. Invasion science: a horizon scan of emerging challenges and opportunities. Trends Ecol. Evol. 32, 464–474 (2017).

    Article  Google Scholar 

  48. Everett, R. A., Miller, A. W. & Ruiz, G. M. Shifting sands could bring invasive species. Science 359, 878 (2018).

    CAS  Google Scholar 

  49. Jeppesen, E. et al. Living in an oasis: rapid transformations, resilience, and resistance in the North Water Area societies and ecosystems. Ambio 47, 296–309 (2018).

    Article  Google Scholar 

  50. Jervelund, C. & Fredslund, N. C. Fiskeriets Økonomiske Fodaftryk i Grønland (Copenhagen Economics, 2013);

  51. Ren, C. & Chimirri, D. Arctic tourism — More than an Industry? The Arctic Institute (3 April 2018).

  52. Fennell, D. A. Ecotourism 4th edn (Routledge, 2014).

  53. Weaver, D. B. & Lawton, L. J. in Arctic Tourism Experiences: Production, Consumption and Sustainability (eds Lee, Y.-S., Weaver, D. & Prebensen, N. K.) (CABI, 2017).

  54. Greenland Tourism Statistics (Statistics Greenland, Visit Greenland, accessed 1 January 2019);

  55. World Heritage List (UNESCO, accessed 1 January 2019);

  56. Hansen, C. O., Groensedt, P., Graversen, C. L. & Hendriksen, C. Arctic Shipping: Commercial Opportunities and Challenges (CBS Maritime, 2016).

  57. Young, O. R. Arctic tipping points: governance in turbulent times. Ambio 41, 75–84 (2012).

    Article  Google Scholar 

  58. Rosa, I. M. D. et al. Multiscale scenarios for nature futures. Nat. Ecol. Evol. 1, 1416–1419 (2017).

    Article  Google Scholar 

  59. Ostrom, E. A General framework for analyzing sustainability of social-ecological systems. Science 325, 419–422 (2009).

    Article  CAS  Google Scholar 

  60. Gius, F., Busch, L. L. & Miller, R. V. Update of Mineral Land Classification: Portland Cement Concrete-Grade Aggregate in the Western San Diego County Production Comsumption Region, California (California Geological Survey, 2017).

  61. FACT SHEET: Atlantic Coast of New York City, East Rockaway Inlet to Rockaway Inlet (Rockaway Beach) and Jamaica Bay. US Army Corps of Engineers (accessed 1 January 2019);

  62. Beach Nourishment at Coney Island PBS (29 October 2019);

Download references


M.B., A.A.B. and L.L.I. were funded by The Carlsberg Foundation (grants CF17-0323, CF17-0529 and CF17-0155). A.K. was funded by the Danish National Research Foundation (CENPERM DNRF100). M.T.R received support from The Novo Nordisk Foundation (NNF16SH0020278). I.O. thanks the University of Colorado for a 2018 Research & Innovative Seed Grant on Sediment Fluxes from Greenland.

Author information

Authors and Affiliations



M.B. and L.L.I. framed the Perspective and together with I.O. collected the data presented here. L.L.I. and A.G.Z. produced the graphics. M.B. and L.L.I. wrote the manuscript with contributions and inputs from all authors.

Corresponding author

Correspondence to Mette Bendixen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bendixen, M., Overeem, I., Rosing, M.T. et al. Promises and perils of sand exploitation in Greenland. Nat Sustain 2, 98–104 (2019).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene