Larger gains from improved management over sparing–sharing for tropical forests

Abstract

Tropical forests are globally important for both biodiversity conservation and the production of economically valuable wood products. To deliver both simultaneously, two contrasting approaches have been suggested: one partitions forests (sparing); the other integrates both objectives in the same location (sharing). To date, the ‘sparing or sharing’ debate has focused on agricultural landscapes, with scant attention paid to forest management. We explore the delivery of biodiversity and wood products in a continuum of sparing-to-sharing scenarios, using spatial optimization with set economic returns in East Kalimantan, Indonesia—a biodiversity hotspot. We found that neither sparing nor sharing extremes are optimal, although the greatest conservation value was attained towards the sparing end of the continuum. Critically, improved management strategies, such as reduced-impact logging, provided larger conservation gains than altering the balance between sparing and sharing, particularly for endangered species. Ultimately, debating sparing versus sharing has limited value while larger gains remain from improving forest management.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: The context of the study.
Fig. 2: Spatial sparing and sharing scenarios.
Fig. 3: Optimal sparing or sharing strategies.
Fig. 4: The sparing-to-sharing continuum for different taxa and IUCN red list categories when either allowing improved management (red) or constraining the problem to conventional management types (blue).
Fig. 5: Contribution to the optimal objective value from improved management and sparing/sharing strategies across the range of conservation objectives.

Code availability

We formulated the integer linear programming problem using the R programming language63 and solved it using the software Gurobi64. The R code is available from the corresponding author upon reasonable request.

Data availability

The data sets analysed in this paper are available via https://doi.org/10.5063/F1GX48S7.

References

  1. 1.

    Wilson, E. O. The Diversity of Life (Belknap Press, Cambridge, 1992).

  2. 2.

    Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).

    CAS  Article  Google Scholar 

  3. 3.

    Sheil, D. & Wunder, S. The value of tropical forest to local communities: complications, caveats, and cautions. Conserv. Ecol. 6, 9 (2002).

    Article  Google Scholar 

  4. 4.

    Decision X/2, The strategic plan for biodiversity 2011–2020 and the Aichi biodiversity targets. In Proc. Conf. Parties Convention Biol. Diversity (CBD, 2010).

  5. 5.

    United Nations Climate Summit. New York Declaration on Forests (United Nations, New York, 2014).

  6. 6.

    United Nations. The Sustainable Development Goals Report 2017 (United Nations, New York, 2017).

  7. 7.

    United Nations. Adoption of the Paris Agreement (United Nations, New York, 2015).

  8. 8.

    Gustavsson, L., Pingoud, K. & Sathre, R. Carbon dioxide balance of wood substitution: comparing concrete- and wood-framed buildings. Mitig. Adapt. Strateg. Glob. Chang. 11, 667–691 (2006).

    Article  Google Scholar 

  9. 9.

    International Tropical Timber Organization. Biennial Review and Assessment of the World Timber Situation (ITTO, Yokohama, 2017).

  10. 10.

    Food and Agriculture Organization of the United Nations. Contribution of the Forestry Sector to National Economies, 1990–2011 (FAO, Rome, 2014).

  11. 11.

    Barlow, J. et al. Quantifying the biodiversity value of tropical primary, secondary, and plantation forests. Proc. Natl Acad. Sci. USA 104, 18555–18560 (2007).

    CAS  Article  Google Scholar 

  12. 12.

    Abood, S. A., Lee, J. S. H., Burivalova, Z., Garcia-Ulloa, J. & Koh, L. P. Relative contributions of the logging, fiber, oil palm, and mining industries to forest loss in Indonesia. Conserv. Lett. 8, 58–67 (2015).

    Article  Google Scholar 

  13. 13.

    Griscom, B. & Goodman, R. Reframing the sharing vs sparing debate for tropical forestry landscapes. J. Trop. For. Sci. 27, 145–147 (2015).

    Google Scholar 

  14. 14.

    Edwards, D. P., Tobias, J. A., Sheil, D., Meijaard, E. & Laurance, W. F. Maintaining ecosystem function and services in logged tropical forests. Trends Ecol. Evol. 29, 511–520 (2014).

    Article  Google Scholar 

  15. 15.

    Edwards, D. P. et al. Land-sharing versus land-sparing logging: reconciling timber extraction with biodiversity conservation. Glob. Chang. Biol. 20, 183–191 (2014).

    Article  Google Scholar 

  16. 16.

    Griscom, B. W., Goodman, R. C., Burisalova, Z. & Putz, F. E. Carbon and biodiversity impacts of intensive versus extensive tropical forestry. Conserv. Lett. 11, e12362 (2018).

    Article  Google Scholar 

  17. 17.

    França, F. M., Frazão, F. S., Korasaki, V., Louzada, J. & Barlow, J. Identifying thresholds of logging intensity on dung beetle communities to improve the sustainable management of Amazonian tropical forests. Biol. Conserv. 216, 115–122 (2017).

    Article  Google Scholar 

  18. 18.

    Phalan, B., Onial, M., Balmford, A. & Green, R. E. Reconciling food production and biodiversity conservation: land sharing and land sparing compared. Science 333, 1289–1291 (2011).

    CAS  Article  Google Scholar 

  19. 19.

    Law, E. A. & Wilson, K. A. Providing context for the land-sharing and land-sparing debate. Conserv. Lett. 8, 404–413 (2015).

    Article  Google Scholar 

  20. 20.

    Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).

    CAS  Article  Google Scholar 

  21. 21.

    Ramankutty, N., Evan, A. T., Monfreda, C. & Foley, J. A. Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Global Biogeochem. Cycles 22, GB1003 (2008).

    Article  Google Scholar 

  22. 22.

    Bicknell, J. E., Struebig, M. J., Edwards, D. P. & Davies, Z. G. Improved timber harvest techniques maintain biodiversity in tropical forests. Curr. Biol. 24, R1119–R1120 (2014).

    CAS  Article  Google Scholar 

  23. 23.

    Paquette, A. & Messier, C. The role of plantations in managing the world’s forests in the Anthropocene. Front. Ecol. Environ. 8, 27–34 (2010).

    Article  Google Scholar 

  24. 24.

    Kuempel, C. D., Adams, V. M., Possingham, H. P. & Bode, M. Bigger or better: the relative benefits of protected area network expansion and enforcement for the conservation of an exploited species. Conserv. Lett. 11, e12433 (2018).

    Article  Google Scholar 

  25. 25.

    Gaveau, D. L. A. et al. Examining protected area effectiveness in Sumatra: importance of regulations governing unprotected lands. Conserv. Lett. 5, 142–148 (2012).

    Article  Google Scholar 

  26. 26.

    de Bruyn, M. et al. Borneo and Indochina are major evolutionary hotspots for Southeast Asian biodiversity. Syst. Biol. 63, 879–901 (2014).

    Article  Google Scholar 

  27. 27.

    Wells, P. L., Paoli, G. D. & Suryadi, I. Landscape High Conservation Values in East Kalimantan: Mapping & Recommended Management, with Special Focus on Berau and East Kutai Regencies (The Nature Conservancy, Jakarta, 2010).

  28. 28.

    Ruslandi., Putz F. E. & Cropper, W. P. Effects of silvicultural intensification on timber yields, carbon dynamics, and tree species composition in a dipterocarp forest in Kalimantan, Indonesia: an individual-tree based model simulation. For. Ecol. Manage. 390, 104–118 (2017).

  29. 29.

    Curran, L. M. et al. Lowland forest loss in protected areas of Indonesian Borneo. Science 303, 1000–1003 (2004).

    CAS  Article  Google Scholar 

  30. 30.

    Watson, J. E. M. et al. The exceptional value of intact forest ecosystems. Nat. Ecol. Evol. 2, 599–610 (2018).

    Article  Google Scholar 

  31. 31.

    Barlow, J. et al. Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. Nature 535, 144–147 (2016).

    CAS  Article  Google Scholar 

  32. 32.

    Cowlishaw, G., Pettifor, R. A. & Isaac, N. J. B. High variability in patterns of population decline: the importance of local processes in species extinctions. Proc. Biol. Sci. 276, 63–69 (2009).

    Article  Google Scholar 

  33. 33.

    Brodie, J. F. et al. Correlation and persistence of hunting and logging impacts on tropical rainforest mammals. Conserv. Biol. 29, 110–121 (2015).

    Article  Google Scholar 

  34. 34.

    Burivalova, Z. et al. Avian responses to selective logging shaped by species traits and logging practices. Proc. Biol. Sci. 282, 20150164 (2015).

    Article  Google Scholar 

  35. 35.

    Martin, P. A., Newton, A. C. & Bullock, J. M. Carbon pools recover more quickly than plant biodiversity in tropical secondary forests. Proc. Biol. Sci. 280, 20132236 (2013).

    Article  Google Scholar 

  36. 36.

    Koh, L. P., Lee, T. M., Sodhi, N. S. & Ghazoul, J. An overhaul of the species-area approach for predicting biodiversity loss: incorporating matrix and edge effects. J. Appl. Ecol. 47, 1063–1070 (2010).

    Article  Google Scholar 

  37. 37.

    Boakes, E. H., Mace, G. M., McGowan, P. J. K. & Fuller, R. A. Extreme contagion in global habitat clearance. Proc. Biol. Sci. 277, 1081–1085 (2010).

    Article  Google Scholar 

  38. 38.

    Santika, T. et al. Community forest management in Indonesia: avoided deforestation in the context of anthropogenic and climate complexities. Glob. Environ. Change 46, 60–71 (2017).

    Article  Google Scholar 

  39. 39.

    Runting, R. K. et al. Alternative futures for Borneo show the value of integrating economic and conservation targets across borders. Nat. Commun. 6, 6819 (2015).

    CAS  Article  Google Scholar 

  40. 40.

    Governor of East Kalimantan Peraturan Gubernur Kalimantan Timur, Nomor 17 Tahun 2015, Tentang, Penataan Pemberian Izin Dan Non Perizinan Serta Penyempurnaan Tata Kelola Perizinan Di Sektor Pertambangan, Kehutanan Dan Perkebunan Kelapa Sawit Di Provinsi Kalimantan Timur (2015).

  41. 41.

    Bicknell, J. E., Gaveau, D. L. A., Davies, Z. G. & Struebig, M. J. Saving logged tropical forests: closing roads will bring immediate benefits. Front. Ecol. Environ. 13, 73–74 (2015).

    Article  Google Scholar 

  42. 42.

    Matricardi, E. A. T., Skole, D. L., Pedlowski, M. A., Chomentowski, W. & Fernandes, L. C. Assessment of tropical forest degradation by selective logging and fire using Landsat imagery. Remote Sens. Environ. 114, 1117–1129 (2010).

    Article  Google Scholar 

  43. 43.

    Koplitz, S. N. et al. Public health impacts of the severe haze in Equatorial Asia in September–October 2015: demonstration of a new framework for informing fire management strategies to reduce downwind smoke exposure. Environ. Res. Lett. 11, 094023 (2016).

    Article  Google Scholar 

  44. 44.

    Davis, J. T. et al. It’s not just conflict that motivates killing of orangutans. PLoS ONE 8, e75373 (2013).

    CAS  Article  Google Scholar 

  45. 45.

    Harrison, R. D. et al. Impacts of hunting on tropical forests in Southeast Asia. Conserv. Biol. 30, 972–981 (2016).

    Article  Google Scholar 

  46. 46.

    Brashares, J. S. et al. Bushmeat hunting, wildlife declines, and fish supply in West Africa. Science 306, 1180–1183 (2004).

    CAS  Article  Google Scholar 

  47. 47.

    McQuistan, C. I., Fahmi, Z., Leisher, C., Halim, A. & Adi, S. W. Protected Area Funding in Indonesia: a study implemented under the Programmes of Work on Protected Areas of the Seventh Meeting of the Conference of Parties on the Convention on Biological Diversity (State Ministry of Environment, Republic of Indonesia, Jakarta, 2006).

  48. 48.

    Romero, C. et al. An Overview of Current Knowledge about the Impacts of Forest Management Certification: a Proposed Framework for Its Evaluation (CIFOR, Bogor, 2013).

  49. 49.

    Venter, O. et al. Using systematic conservation planning to minimize REDD+ conflict with agriculture and logging in the tropics. Conserv. Lett. 6, 116–124 (2013).

    Article  Google Scholar 

  50. 50.

    Meijaard, E. et al. People’s perceptions about the importance of forests on Borneo. PLoS ONE 8, e73008 (2013).

    CAS  Article  Google Scholar 

  51. 51.

    Bennett, E. M. Changing the agriculture and environment conversation. Nat. Ecol. Evol. 1, 18 (2017).

    Article  Google Scholar 

  52. 52.

    Law, E. A. et al. Better land-use allocation outperforms land sparing and land sharing approaches to conservation in Central Kalimantan, Indonesia. Biol. Conserv. 186, 276–286 (2015).

    Article  Google Scholar 

  53. 53.

    Sodhi, N. S., Koh, L. P., Brook, B. W. & Ng, P. K. L. Southeast Asian biodiversity: an impending disaster. Trends Ecol. Evol. 19, 654–660 (2004).

    Article  Google Scholar 

  54. 54.

    Green, R. E., Cornell, S. J., Scharlemann, J. P. & Balmford, A. Farming and the fate of wild nature. Science 307, 550–555 (2005).

    CAS  Article  Google Scholar 

  55. 55.

    Zhuang, J, Liang, Z, Lin, T. & De Guzman, F. Theory and Practice in the Choice of Social Discount Rate for Cost–Benefit Analysis: a Survey (Asian Development Bank, Manila, 2007).

  56. 56.

    Struebig, M. J. et al. Targeted conservation to safeguard a biodiversity hotspot from climate and land-cover change. Curr. Biol. 25, 372–378 (2015).

    CAS  Article  Google Scholar 

  57. 57.

    McBride, M. F. et al. Structured elicitation of expert judgments for threatened species assessment: a case study on a continental scale using email. Methods Ecol. Evol. 3, 906–920 (2012).

    Article  Google Scholar 

  58. 58.

    Martin, T. G. et al. Eliciting expert knowledge in conservation science. Conserv. Biol. 26, 29–38 (2012).

    Article  Google Scholar 

  59. 59.

    Watts, M. E., Ball, I. R., Stewart, R. S., Klein, C. J. & Wilson, K. Marxan with Zones: software for optimal conservation based land-and sea-use zoning. Environ. Model. Softw. 24, 1513–1521 (2009).

    Article  Google Scholar 

  60. 60.

    Beyer, H. L., Dujardin, Y., Watts, M. E. & Possingham, H. P. Solving conservation planning problems with integer linear programming. Ecol. Modell. 328, 14–22 (2016).

    Article  Google Scholar 

  61. 61.

    Tropical Forest Foundation. RIL Verified Participants http://www.tff-indonesia.org/index.php/r-i-l/ril-verified-participants (2016).

  62. 62.

    Minister of Forestry of the Republic of Indonesia Keputusan Menteri Kehutanan Republik Indonesia, Nomor: SK.718/Menhut-11/2014 (2014).

  63. 63.

    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2018).

  64. 64.

    Gurobi Optimizer Reference Manual (Gurobi Optimization, 2014).

Download references

Acknowledgements

This research was supported by Australian Research Council Discovery Project grant no. DP160101397. Support was also provided by funding from the Doris Duke Charitable Foundation and the Science for Nature and People Partnership (SNAPP), a partnership of The Nature Conservancy, the Wildlife Conservation Society and the National Center for Ecological Analysis and Synthesis at the University of California, Santa Barbara (https://snappartnership.net). F.A.A.K was supported by a Niche Research Grant Scheme, grant no. NRGS/1087/2–13(01). We would like to thank A. Klassen, C. Romero, N. Wolff and all members of the SNAPP Forest Sparing or Sharing team for useful discussions.

Author information

Affiliations

Authors

Contributions

B.G., O.V., R.K.R., E.T.G., Z.B., F.E.P., R., J.A.W., P.E., S.M.L. and M.S. conceptualized the manuscript. R.K.R., R., M.J.S., M.S. and J.A.W. developed the spatial data inputs. R.K.R. led the expert elicitation with input from E.M., M.J.S., O.V., N.J.D., A.W., E.T.G., S.M.C., M.S., A.J.M., B.G., F.A.A.K., M.A. and Z.B.. R.K.R. conducted the analyses. All authors interpreted the results and contributed to writing the paper.

Corresponding author

Correspondence to Rebecca K. Runting.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary Tables 1–9, Supplementary Figs. 1–5, Supplementary Results, Supplementary References 1–33

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Runting, R.K., Ruslandi, Griscom, B.W. et al. Larger gains from improved management over sparing–sharing for tropical forests. Nat Sustain 2, 53–61 (2019). https://doi.org/10.1038/s41893-018-0203-0

Download citation

Further reading