Social-ecological and technological factors moderate the value of urban nature


Urban nature has the potential to improve air and water quality, mitigate flooding, enhance physical and mental health, and promote social and cultural well-being. However, the value of urban ecosystem services remains highly uncertain, especially across the diverse social, ecological and technological contexts represented in cities around the world. We review and synthesize research on the contextual factors that moderate the value and equitable distribution of ten of the most commonly cited urban ecosystem services. Our work helps to identify strategies to more efficiently, effectively and equitably implement nature-based solutions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: A framework for analysing the value of urban nature-based solutions.


  1. 1.

    World Urbanization Prospects: The 2014 Revision (United Nations, Department of Economic and Social Affairs, Population Division, 2014).

  2. 2.

    Seto, K. C., Golden, J. S., Alberti, M. & Turner, B. L. Sustainability in an urbanizing planet. Proc. Natl Acad. Sci. USA 114, 8935–8938 (2017).

    CAS  Article  Google Scholar 

  3. 3.

    The State of City Climate Finance 2015 (Cities Climate Finance Leadership Alliance, 2015).

  4. 4.

    Schmidt-Traub, G. Investment Needs to Achieve the Sustainable Development Goals: Understanding the Billions and Trillions Working Paper Version 2 (Sustainable Development Solutions Network, 2015).

  5. 5.

    Nesshöver, C. et al. The science, policy and practice of nature-based solutions: an interdisciplinary perspective. Sci. Total Environ. 579, 1215–1227 (2017).

    Article  CAS  Google Scholar 

  6. 6.

    Depietri, Y. & McPhearson, T. in Nature-Based Solutions to Climate Change Adaptation in Urban Areas: Linkages between Science, Policy and Practice (eds Kabisch, N., Korn, H., Stadler, J. & Bonn, A.) 91–109 (Springer, Cham, 2017).

  7. 7.

    Hartig, T. & Kahn, P. H. Living in cities, naturally. Science 352, 938–40 (2016).

    CAS  Article  Google Scholar 

  8. 8.

    Soga, M. & Gaston, K. J. Extinction of experience: the loss of human–nature interactions. Front. Ecol. Environ. 14, 94–101 (2016).

    Article  Google Scholar 

  9. 9.

    Cox, D. T. C., Hudson, H. L., Shanahan, D. F., Fuller, R. A. & Gaston, K. J. The rarity of direct experiences of nature in an urban population. Landsc. Urban Plan. 160, 79–84 (2017).

    Article  Google Scholar 

  10. 10.

    Elmqvist, T. et al. Urbanization, Biodiversity and Ecosystem Services: Challenges and Opportunities (Springer, Cham, 2013).

  11. 11.

    Dunn, R. R., Gavin, M. C., Sanchez, M. C. & Solomon, J. N. The pigeon paradox: dependence of global conservation on urban nature. Conserv. Biol. 20, 1814–1816 (2006).

    Article  Google Scholar 

  12. 12.

    Cortinovis, C. & Geneletti, D. Ecosystem services in urban plans: what is there, and what is still needed for better decisions. Land Use Policy 70, 298–312 (2018).

    Article  Google Scholar 

  13. 13.

    Gómez-Baggethun, E. & Barton, D. N. Classifying and valuing ecosystem services for urban planning. Ecol. Econ. 86, 235–245 (2013).

    Article  Google Scholar 

  14. 14.

    Bolund, P. & Hunhammar, S. Ecosystem services in urban areas. Ecol. Econ. 29, 293–301 (1999).

    Article  Google Scholar 

  15. 15.

    Luederitz, C. et al. A review of urban ecosystem services: six key challenges for future research. Ecosyst. Serv. 14, 98–112 (2015).

    Article  Google Scholar 

  16. 16.

    Haase, D. et al. A quantitative review of urban ecosystem service assessments: concepts, models, and implementation. Ambio 43, 413–433 (2014).

    Article  Google Scholar 

  17. 17.

    Raymond, C. M. et al. A framework for assessing and implementing the co-benefits of nature-based solutions in urban areas. Environ. Sci. Policy 77, 15–24 (2017).

    Article  Google Scholar 

  18. 18.

    Kabisch, N., Qureshi, S. & Haase, D. Human–environment interactions in urban green spaces — a systematic review of contemporary issues and prospects for future research. Environ. Impact Assess. Rev. 50, 25–34 (2015).

    Article  Google Scholar 

  19. 19.

    Salmond, J. A. et al. Health and climate related ecosystem services provided by street trees in the urban environment. Environ. Health 15(Suppl. 1), S36 (2016).

    Article  Google Scholar 

  20. 20.

    Ruckelshaus, M. H. et al. Evaluating the benefits of green infrastructure for coastal areas: location, location, location. Coast. Manag. 44, 504–516 (2016).

    Article  Google Scholar 

  21. 21.

    Grimm, N. B., Cook, E. M., Hale, R. L. & Iwaniec, D. M. in Routledge Handbook of Urbanization and Global Environmental Change (eds Seto, K. C. et al.) 202–212 (2015).

  22. 22.

    McPhearson, T. et al. Advancing urban ecology toward a science of cities. Bioscience 66, 198–212 (2016).

    Article  Google Scholar 

  23. 23.

    Kremer, P. et al. Key insights for the future of urban ecosystem services research. Ecol. Soc. 21, 1–11 (2016).

    Article  Google Scholar 

  24. 24.

    Ramaswami, A. et al. A social–ecological–infrastructural systems framework for interdisciplinary study of sustainable city systems: an integrative curriculum across seven major disciplines. J. Ind. Ecol. 16, 801–813 (2012).

    Article  Google Scholar 

  25. 25.

    Mullaney, J., Lucke, T. & Trueman, S. J. A review of benefits and challenges in growing street trees in paved urban environments. Landsc. Urban Plan. 134, 157–166 (2015).

    Article  Google Scholar 

  26. 26.

    Hotte, N., Barron, S., Nesbitt, L., Cheng, Z. C. & Cowan, J. The Social and Economic Values of Canada’s Urban Forests: A National Synthesis (UBC Faculty of Forestry, University of British Columbia, Forest Sciences Centre, 2015).

  27. 27.

    Pataki, D. E. et al. Coupling biogeochemical cycles in urban environments: ecosystem services, green solutions, and misconceptions. Front. Ecol. Environ. 9, 27–36 (2011).

    Article  Google Scholar 

  28. 28.

    Baró, F., Haase, D., Gómez-Baggethun, E. & Frantzeskaki, N. Mismatches between ecosystem services supply and demand in urban areas: a quantitative assessment in five European cities. Ecol. Indic. 55, 146–158 (2015).

    Article  Google Scholar 

  29. 29.

    Wachsmuth, D., Aldana Cohen, D. & Angelo, H. Expand the frontiers of urban sustainability. Nature 536, 391–393 (2016).

    CAS  Article  Google Scholar 

  30. 30.

    Ordóñez-Barona, C. How different ethno-cultural groups value urban forests and its implications for managing urban nature in a multicultural landscape: a systematic review of the literature. Urban For. Urban Green. 26, 65–77 (2017).

    Article  Google Scholar 

  31. 31.

    Pincetl, S., Gillespie, T., Pataki, D. E., Saatchi, S. & Saphores, J. D. Urban tree planting programs, function or fashion? Los Angeles and urban tree planting campaigns. GeoJournal 78, 475–493 (2013).

    Article  Google Scholar 

  32. 32.

    Jones, R. E., Davis, K. L. & Bradford, J. The value of trees: factors influencing homeowner support for protecting local urban trees. Environ. Behav. 45, 650–676 (2013).

    Article  Google Scholar 

  33. 33.

    Meerow, S. & Newell, J. P. Urban resilience for whom, what, when, where, and why? Urban Geogr. (2016).

  34. 34.

    Ives, C. D. & Kendal, D. The role of social values in the management of ecological systems. J. Environ. Manage. 144, 67–72 (2014).

    Article  Google Scholar 

  35. 35.

    Olander, L. P. et al. Benefit relevant indicators: ecosystem services measures that link ecological and social outcomes. Ecol. Indic. 85, 1262–1272 (2018).

    Article  Google Scholar 

  36. 36.

    Pascual, U. et al. Valuing nature’s contributions to people: the IPBES approach. Curr. Opin. Environ. Sustain. 26–27, 7–16 (2017).

    Article  Google Scholar 

  37. 37.

    Jennings, V., Larson, L. & Yun, J. Advancing sustainability through urban green space: cultural ecosystem services, equity, and social determinants of health. Int. J. Environ. Res. Public Health 13, 196 (2016).

    Article  Google Scholar 

  38. 38.

    Checker, M. Wiped out by the ‘Greenwave’: environmental gentrification and the paradoxical politics of urban sustainability. City Soc. 23, 210–229 (2011).

    Article  Google Scholar 

  39. 39.

    van den Bosch, M. & Ode Sang, Å. Urban natural environments as nature-based solutions for improved public health — a systematic review of reviews. Environ. Res. 158, 373–384 (2017).

    Article  CAS  Google Scholar 

  40. 40.

    Dempsey, N., Bramley, G., Power, S. & Brown, C. The social dimension of sustainable development: defining urban social sustainability. Sustain. Dev. 19, 289–300 (2011).

    Article  Google Scholar 

  41. 41.

    Saldivar-Tanaka, L. Culturing neighborhood open space, civic agriculture, and community development: the case of Latino community gardens in New York City. Agric. Hum. Values 21, 399–412 (2004).

    Article  Google Scholar 

  42. 42.

    Langemeyer, J., Camps-Calvet, M., Calvet-Mir, L., Barthel, S. & Gómez-Baggethun, E. Stewardship of urban ecosystem services: understanding the value(s) of urban gardens in Barcelona. Landsc. Urban Plan. 170, 79–89 (2018).

    Article  Google Scholar 

  43. 43.

    Rupprecht, C. D. D. & Byrne, J. A. Informal urban green-space: comparison of quantity and characteristics in Brisbane, Australia and Sapporo, Japan. PLoS ONE 9, e99784 (2014).

    Article  Google Scholar 

  44. 44.

    van den Berg, A. E. & van Winsum-Westra, M. Manicured, romantic, or wild? The relation between need for structure and preferences for garden styles. Urban For. Urban Green. 9, 179–186 (2010).

    Article  Google Scholar 

  45. 45.

    Nassauer, J. I. Messy ecosystems, orderly frames. Landsc. J. 14, 161–170 (1995).

    Article  Google Scholar 

  46. 46.

    Lin, B. B., Fuller, R. A., Bush, R., Gaston, K. J. & Shanahan, D. F. Opportunity or orientation? Who uses urban parks and why. PLoS ONE 9, e87422 (2014).

    Article  CAS  Google Scholar 

  47. 47.

    Lapham, S. C. et al. How important is perception of safety to park use? A four-city survey. Urban Stud. 53, 2624–2636 (2016).

    Article  Google Scholar 

  48. 48.

    Ghimire, R., Green, G. T., Poudyal, N. C. & Cordell, H. K. An analysis of perceived constraints to outdoor recreation. J. Park Recreat. Admi. 32, 52–67 (2014).

    Google Scholar 

  49. 49.

    Koppen, G., Sang, Å. O. & Tveit, M. S. Managing the potential for outdoor recreation: adequate mapping and measuring of accessibility to urban recreational landscapes. Urban For. Urban Green. 13, 71–83 (2014).

    Article  Google Scholar 

  50. 50.

    Tsunetsugu, Y., Park, B. J. & Miyazaki, Y. Trends in research related to ‘shinrin-yoku’ (taking in the forest atmosphere or forest bathing) in Japan. Environ. Health Prev. Med. 15, 27–37 (2010).

    Article  Google Scholar 

  51. 51.

    Matthews, T., Lo, A. Y. & Byrne, J. A. Reconceptualizing green infrastructure for climate change adaptation: barriers to adoption and drivers for uptake by spatial planners. Landsc. Urban Plan. 138, 155–163 (2015).

    Article  Google Scholar 

  52. 52.

    Poustie, M. S. & Deletic, A. Modeling integrated urban water systems in developing countries: case study of Port Vila, Vanuatu. Ambio 43, 1093–1111 (2014).

    Article  Google Scholar 

  53. 53.

    Larsen, T. A., Hoffmann, S., Lüthi, C., Truffer, B. & Maurer, M. Emerging solutions to the water challenges of an urbanizing world. Science 352, 928–933 (2016).

    CAS  Article  Google Scholar 

  54. 54.

    Poustie, M. S. et al. Sustainable urban water futures in developing countries: the centralised, decentralised or hybrid dilemma. Urban Water J. 12, 543–558 (2015).

    Article  Google Scholar 

  55. 55.

    Lawrence, A., De Vreese, R., Johnston, M., Konijnendijk van den Bosch, C. C. & Sanesi, G. Urban forest governance: towards a framework for comparing approaches. Urban For. Urban Green. 12, 464–473 (2013).

    Article  Google Scholar 

  56. 56.

    Cutter, S. L., Boruff, B. J. & Shirley, W. L. Social vulnerability to environmental hazards. Soc. Sci. Q. 84, 242–261 (2003).

    Article  Google Scholar 

  57. 57.

    Paul, B. K. Factors affecting evacuation behavior: the case of 2007 Cyclone Sidr, Bangladesh. Prof. Geogr. 64, 401–414 (2012).

    Article  Google Scholar 

  58. 58.

    O’Neill, M. S., Zanobetti, A. & Schwartz, J. Disparities by race in heat-related mortality in four US cities: the role of air conditioning prevalence. J. Urban Health 82, 191–197 (2005).

    Article  Google Scholar 

  59. 59.

    Flocks, J., Escobedo, F., Wade, J., Varela, S. & Wald, C. Environmental justice implications of urban tree cover in Miami-Dade County, Florida. Environ. Justice 4, 125–134 (2011).

    Article  Google Scholar 

  60. 60.

    Nowak, D. J., Crane, D. E. & Stevens, J. C. Air pollution removal by urban trees and shrubs in the United States. Urban For. Urban Green. 4, 115–123 (2006).

    Article  Google Scholar 

  61. 61.

    Janhäll, S. Review on urban vegetation and particle air pollution — deposition and dispersion. Atmos. Environ. 105, 130–137 (2015).

    Article  CAS  Google Scholar 

  62. 62.

    McPherson, E. G. & Kendall, A. A life cycle carbon dioxide inventory of the Million Trees Los Angeles program. Int. J. Life Cycle Assess. 19, 1653–1665 (2014).

    CAS  Article  Google Scholar 

  63. 63.

    Hamstead, Z. A., Kremer, P., Larondelle, N., McPhearson, T. & Haase, D. Classification of the heterogeneous structure of urban landscapes (STURLA) as an indicator of landscape function applied to surface temperature in New York City. Ecol. Indic. 70, 574–585 (2016).

    Article  Google Scholar 

  64. 64.

    Pinsky, M. L., Guannel, G. & Arkema, K. K. Quantifying wave attenuation to inform coastal habitat conservation. Ecosphere 4, 1–16 (2013).

    Article  Google Scholar 

  65. 65.

    Xiao, Q. & McPherson, E. G. Surface water storage capacity of twenty tree species in Davis, California. J. Environ. Qual. 45, 188 (2016).

    CAS  Article  Google Scholar 

  66. 66.

    Berland, A. et al. The role of trees in urban stormwater management. Landsc. Urban Plan. 162, 167–177 (2017).

    Article  Google Scholar 

  67. 67.

    Badami, M. G. & Ramankutty, N. Urban agriculture and food security: a critique based on an assessment of urban land constraints. Glob. Food Sec. 4, 8–15 (2015).

    Article  Google Scholar 

  68. 68.

    Gunawardena, K. R., Wells, M. J. & Kershaw, T. Utilising green and bluespace to mitigate urban heat island intensity. Sci. Total Environ. 584–585, 1040–1055 (2017).

    Article  CAS  Google Scholar 

  69. 69.

    Zardo, L., Geneletti, D., Pérez-Soba, M. & Van Eupen, M. Estimating the cooling capacity of green infrastructures to support urban planning. Ecosyst. Serv. 26, 225–235 (2017).

    Article  Google Scholar 

  70. 70.

    Narayan, S. et al. The effectiveness, costs and coastal protection benefits of natural and nature-based defences. PLoS ONE 11, e0154735 (2016).

    Article  CAS  Google Scholar 

  71. 71.

    Koch, E. W. et al. Non-linearity in ecosystem services: temporal and spatial variability in coastal protection. Front. Ecol. Environ. 7, 29–37 (2009).

    Article  Google Scholar 

  72. 72.

    National Research Council Mitigating Shore Erosion Along Sheltered Coasts (The National Academies Press, Washington DC, 2007).

  73. 73.

    Guswa, A. J., Hamel, P. & Dennedy-Frank, P. J. Potential effects of landscape change on water supplies in the presence of reservoir storage. Water Resour. Res. 53, 2679–2692 (2017).

    Article  Google Scholar 

  74. 74.

    Hamel, P., Daly, E. & Fletcher, T. D. Source-control stormwater management for mitigating the impacts of urbanisation on baseflow: a review. J. Hydrol. 485, 201–211 (2013).

    Article  Google Scholar 

  75. 75.

    Palliwoda, J., Kowarik, I. & von der Lippe, M. Human–biodiversity interactions in urban parks: the species level matters. Landsc. Urban Plan. 157, 394–406 (2017).

    Article  Google Scholar 

  76. 76.

    Qiu, L., Lindberg, S. & Nielsen, A. B. Is biodiversity attractive? On-site perception of recreational and biodiversity values in urban green space. Landsc. Urban Plan. 119, 136–146 (2013).

    Article  Google Scholar 

  77. 77.

    Barnes, M. et al. Characterizing nature and participant experience in studies of nature exposure for mental health, an integrative review. Front. Psychol. (in the press).

  78. 78.

    Nagendra, H., Bai, X., Brondizio, E. S. & Lwasa, S. The urban south and the predicament of global sustainability. Nat. Sustain. 1, 341–349 (2018).

    Article  Google Scholar 

  79. 79.

    Fletcher, T. D., Andrieu, H. & Hamel, P. Understanding, management and modelling of urban hydrology and its consequences for receiving waters: a state of the art. Adv. Water Resour. 51, 261–279 (2013).

    Article  Google Scholar 

  80. 80.

    Walsh, C. J. et al. Principles for urban stormwater management to protect stream ecosystems. Freshw. Sci. 35, 398–411 (2016).

    Article  Google Scholar 

  81. 81.

    Cohen, D. A. et al. The prevalence and use of walking loops in neighborhood parks: a national study. Environ. Health Perspect. 125, 170–174 (2017).

    Article  Google Scholar 

  82. 82.

    Ramsay, G. et al. The barriers to millennials visiting Rouge Urban National Park. Sustainability 9, 904 (2017).

    Article  Google Scholar 

  83. 83.

    Kondolf, G. M. & Pinto, P. J. The social connectivity of urban rivers. Geomorphology 277, 182–196 (2017).

    Article  Google Scholar 

  84. 84.

    McCormack, G. R., Rock, M., Toohey, A. M. & Hignell, D. Characteristics of urban parks associated with park use and physical activity: a review of qualitative research. Health Place 16, 712–726 (2010).

    Article  Google Scholar 

  85. 85.

    IPCC Climate Change 2014: Synthesis Report (eds Core Writing Team, Pachauri, R. K. & Meyer L. A.) (IPCC, 2014).

  86. 86.

    Vos, P. E. J., Maiheu, B., Vankerkom, J. & Janssen, S. Improving local air quality in cities: to tree or not to tree? Environ. Pollut. 183, 113–122 (2013).

    CAS  Article  Google Scholar 

  87. 87.

    Paerl, H. W. & Huisman, J. Climate change: a catalyst for global expansion of harmful cyanobacterial blooms. Environ. Microbiol. Rep. 1, 27–37 (2009).

    CAS  Article  Google Scholar 

  88. 88.

    Nowak, D. J., Stevens, J. C., Sisinni, S. M. & Luley, C. J. Effects of urban tree management and species selection on atmospheric carbon dioxide. J. Arboric. 28, 113–122 (2002).

    Google Scholar 

  89. 89.

    Andrade, L. H. et al. Mental disorders in megacities: findings from the São Paulo Megacity Mental Health Survey, Brazil. PLoS ONE 7, e31879 (2012).

    CAS  Article  Google Scholar 

  90. 90.

    Bratman, G. N., Hamilton, J. P., Hahn, K. S., Daily, G. C. & Gross, J. J. Nature experience reduces rumination and subgenual prefrontal cortex activation. Proc. Natl Acad. Sci. USA 112, 8567–8572 (2015).

    CAS  Article  Google Scholar 

  91. 91.

    Kuehler, E., Hathaway, J. & Tirpak, A. Quantifying the benefits of urban forest systems as a component of the green infrastructure stormwater treatment network. Ecohydrology 10, e1813 (2017).

    Article  Google Scholar 

  92. 92.

    Criss, R. E. Statistics of evolving populations and their relevance to flood risk. J. Earth Sci. 27, 2–8 (2016).

    CAS  Article  Google Scholar 

  93. 93.

    de Risi, R. et al. Flood risk assessment for informal settlements. Nat. Hazards 69, 1003–1032 (2013).

    Article  Google Scholar 

  94. 94.

    Apparicio, P. & Séguin, A.-M. Accessibility of services and facilities for elderly residents of public housing in Montreal: an equity issue. Urban Stud. 43, 187–211 (2006).

    Article  Google Scholar 

  95. 95.

    Rigolon, A. A complex landscape of inequity in access to urban parks: a literature review. Landsc. Urban Plan. 153, 160–169 (2016).

    Article  Google Scholar 

  96. 96.

    Arkema, K. K. et al. Coastal habitats shield people and property from sea-level rise and storms. Nat. Clim. Change 3, 913–918 (2013).

    Article  Google Scholar 

  97. 97.

    Loughnan, M., Nicholls, N. & Tapper, N. J. Mapping heat health risks in urban areas. Int. J. Popul. Res. 2012, 1–12 (2012).

    Article  Google Scholar 

  98. 98.

    Wolch, J. R., Byrne, J. & Newell, J. P. Urban green space, public health, and environmental justice: the challenge of making cities ‘just green enough’. Landsc. Urban Plan. 125, 234–244 (2014).

    Article  Google Scholar 

  99. 99.

    Kwon, Y., Joo, S., Han, S. & Park, C. Mapping the distribution pattern of gentrification near urban parks in the case of Gyeongui Line Forest Park, Seoul, Korea. Sustainability 9, 231 (2017).

    Article  Google Scholar 

  100. 100.

    Anguelovski, I., Connolly, J. J. T., Masip, L. & Pearsall, H. Assessing green gentrification in historically disenfranchised neighborhoods: a longitudinal and spatial analysis of Barcelona. Urban Geogr. 3, 1–34 (2018).

    Google Scholar 

  101. 101.

    Nagendra, H. & Ostrom, E. Applying the social-ecological system framework to the diagnosis of urban lake commons in Bangalore, India. Ecol. Soc. 19, 67 (2014).

    Article  Google Scholar 

  102. 102.

    Unnikrishnan, H. & Nagendra, H. Privatizing the commons: impact on ecosystem services in Bangalore’s lakes. Urban Ecosyst. 18, 613–632 (2015).

    Article  Google Scholar 

  103. 103.

    Klinenberg, E. Heat Wave: A Social Autopsy of Disaster in Chicago (Univ. Chicago Press, Chicago, 2003).

    Google Scholar 

  104. 104.

    Klein Rosenthal, J., Kinney, P. L. & Metzger, K. B. Intra-urban vulnerability to heat-related mortality in New York City, 1997–2006. Health Place 30, 45–60 (2014).

    Article  Google Scholar 

  105. 105.

    Bedimo-Rung, A. L., Mowen, A. J. & Cohen, D. A. The significance of parks to physical activity and public health. Am. J. Prev. Med. 28, 159–168 (2005).

    Article  Google Scholar 

  106. 106.

    Pham, T. T. H., Apparicio, P., Séguin, A. M., Landry, S. & Gagnon, M. Spatial distribution of vegetation in Montreal: an uneven distribution or environmental inequity? Landsc. Urban Plan. 107, 214–224 (2012).

    Article  Google Scholar 

  107. 107.

    Crawford, D. et al. Do features of public open spaces vary according to neighbourhood socio-economic status? Health Place 14, 887–891 (2008).

    Article  Google Scholar 

  108. 108.

    Cameron, R. et al. The domestic garden — its contribution to urban green infrastructure. Urban For. Urban Green. 11, 129–137 (2012).

    Article  Google Scholar 

  109. 109.

    Kortright, R. & Wakefield, S. Edible backyards: a qualitative study of household food growing and its contributions to food security. Agric. Hum. Values 28, 39–53 (2011).

    Article  Google Scholar 

  110. 110.

    Mitchell, R. & Popham, F. Effect of exposure to natural environment on health inequalities: an observational population study. Lancet 372, 1655–1660 (2008).

    Article  Google Scholar 

  111. 111.

    Wheeler, B. W. et al. Beyond greenspace: an ecological study of population general health and indicators of natural environment type and quality. Int. J. Health Geogr. 14, 1–17 (2015).

    Article  Google Scholar 

  112. 112.

    Andersson, E., Tengö, M., McPhearson, T. & Kremer, P. Cultural ecosystem services as a gateway for improving urban sustainability. Ecosyst. Serv. 12, 165–168 (2015).

    Article  Google Scholar 

  113. 113.

    Vollmer, D. & Grêt-Regamey, A. Rivers as municipal infrastructure: demand for environmental services in informal settlements along an Indonesian river. Glob. Environ. Change. 23, 1542–1555 (2013).

    Article  Google Scholar 

  114. 114.

    Poe, M. R., McLain, R. J., Emery, M. & Hurley, P. T. Urban forest justice and the rights to wild foods, medicines, and materials in the city. Hum. Ecol. 41, 409–422 (2013).

    Article  Google Scholar 

  115. 115.

    Roy, S., Byrne, J. & Pickering, C. A systematic quantitative review of urban tree benefits, costs, and assessment methods across cities in different climatic zones. Urban For. Urban Green. 11, 351–363 (2012).

    Article  Google Scholar 

  116. 116.

    Lin, B. B. et al. Local- and landscape-scale land cover affects microclimate and water use in urban gardens. Sci. Total Environ. 610–611, 570–575 (2018).

    Article  CAS  Google Scholar 

  117. 117.

    Vico, G., Revelli, R. & Porporato, A. Ecohydrology of street trees: design and irrigation requirements for sustainable water use. Ecohydrology 7, 508–523 (2014).

    Article  Google Scholar 

  118. 118.

    Litvak, E., Manago, K. F., Hogue, T. S. & Pataki, D. E. Evapotranspiration of urban landscapes in Los Angeles, California at the municipal scale. Water Resour. Res. 53, 4236–4252 (2017).

    Article  Google Scholar 

  119. 119.

    Janke, B. D., Finlay, J. C. & Hobbie, S. E. Trees and streets as drivers of urban stormwater nutrient pollution. Environ. Sci. Technol. 51, 9569–9579 (2017).

    CAS  Article  Google Scholar 

  120. 120.

    Churkina, G. et al. Effect of VOC emissions from vegetation on air quality in Berlin during a heatwave. Environ. Sci. Technol. 51, 6120–6130 (2017).

    CAS  Article  Google Scholar 

  121. 121.

    Hobbie, S. E. et al. Contrasting nitrogen and phosphorus budgets in urban watersheds and implications for managing urban water pollution. Proc. Natl Acad. Sci. USA 114, 4177–4182 (2017).

    CAS  Article  Google Scholar 

  122. 122.

    Booth, D. B., Roy, A. H., Smith, B. & Capps, K. Global perspectives on the urban stream syndrome. J. Freshw. Sci. 35, 412–420 (2016).

    Article  Google Scholar 

  123. 123.

    Tallis, M., Taylor, G., Sinnett, D. & Freer-Smith, P. Estimating the removal of atmospheric particulate pollution by the urban tree canopy of London, under current and future environments. Landsc. Urban Plan. 103, 129–138 (2011).

    Article  Google Scholar 

  124. 124.

    McDonald, R. et al. Planting Healthy Air: a Global Analysis of the Role of Urban Trees in Addressing Particulate Matter Pollution and Extreme Heat (The Nature Conservancy, 2016).

  125. 125.

    Mcpherson, E. G., Kendall, A. & Albers, S. Million Trees Los Angeles: carbon dioxide sink or source? In Proc. Urban Trees Research Conference (eds Johnston, M. & Perceival, G.) 7–19 (2014).

  126. 126.

    Hardy, D., Cubillo, F., Han, M. & Li, H. Alternative Water Resources: A Review of Concepts, Solutions and Experiences (Alternative Water Resources Cluster International Water Association, 2015).

  127. 127.

    Dadson, S. J. et al. A restatement of the natural science evidence concerning catchment-based ‘natural’ flood management in the UK. Proc. R. Soc. A 473, 20160706 (2017).

    Article  Google Scholar 

  128. 128.

    Depietri, Y., Renaud, F. G. & Kallis, G. Heat waves and floods in urban areas: a policy-oriented review of ecosystem services. Sustain. Sci. 7, 95–107 (2012).

    Article  Google Scholar 

  129. 129.

    CoDyre, M., Fraser, E. D. G. & Landman, K. How does your garden grow? An empirical evaluation of the costs and potential of urban gardening. Urban For. Urban Green. 14, 72–79 (2015).

    Article  Google Scholar 

  130. 130.

    Martellozzo, F. et al. Urban agriculture: a global analysis of the space constraint to meet urban vegetable demand. Environ. Res. Lett. 9, 064025 (2014).

    Article  Google Scholar 

  131. 131.

    Kaplan, S. The restorative benefits of nature: toward an integrative framework. J. Environ. Psychol. 15, 169–182 (1995).

    Article  Google Scholar 

  132. 132.

    Bolund, P. & Hunhammar, S. Ecosystem services in urban areas. Ecol. Econ. 29, 293–301 (1999).

    Article  Google Scholar 

  133. 133.

    Rall, E., Bieling, C., Zytynska, S. & Haase, D. Exploring city-wide patterns of cultural ecosystem service perceptions and use. Ecol. Indic. 77, 80–95 (2017).

    Article  Google Scholar 

  134. 134.

    Thorne, C. R., Lawson, E. C., Ozawa, C., Hamlin, S. L. & Smith, L. A. Overcoming uncertainty and barriers to adoption of blue-green infrastructure for urban flood risk management. J. Flood Risk Manag. 11, S960–S972 (2018).

    Article  Google Scholar 

  135. 135.

    Sampson, R. J. Urban sustainability in an age of enduring inequalities: advancing theory and ecometrics for the 21st-century city. Proc. Natl Acad. Sci. USA 114, 8957–8962 (2017).

    CAS  Article  Google Scholar 

  136. 136.

    Ernstson, H. The social production of ecosystem services: a framework for studying environmental justice and ecological complexity in urbanized landscapes. Landsc. Urban Plan. 109, 7–17 (2013).

    Article  Google Scholar 

  137. 137.

    Díaz, S. et al. Assessing nature’s contributions to people. Science. 359, 270–272 (2018).

    Article  Google Scholar 

  138. 138.

    Jenerette, G. D. Ecological contributions to human health in cities. Landsc. Ecol. 33, 1655–1668 (2018).

    Article  Google Scholar 

  139. 139.

    Trimmer, J. T. & Guest, J. S. Recirculation of human-derived nutrients from cities to agriculture across six continents. Nat. Sustain. 1, 427–435 (2018).

    Article  Google Scholar 

  140. 140.

    Seto, K. C., Güneralp, B. & Hutyra, L. R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl Acad. Sci. USA 109, 16083–16088 (2012).

    CAS  Article  Google Scholar 

  141. 141.

    Roy, A. Urban informality: toward an epistemology of planning. J. Am. Plan. Assoc. 71, 147–158 (2005).

    Article  Google Scholar 

Download references


The work was supported by a grant from the University of Minnesota’s Institute on the Environment to B.L.K. and a University of Minnesota Grand Challenges Research award to B.L.K. and M.H.H. Additional support was provided by the Natural Capital Project at Stanford University. T.M.’s participation was supported by the Urban Resilience to Extreme Weather-Related Events Sustainability Research Network (URExSRN; NSF grant no. SES 1444755). Assistance with literature review, formatting and references was provided by V. Dang, M. Rattu and A. Rutledge. S. Polasky and P. Kareiva provided valuable feedback on framing and early drafts of the manuscript.

Author information



Corresponding author

Correspondence to Bonnie L. Keeler.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Information

Supplementary Table 1, Supplementary Information, Supplementary References

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Keeler, B.L., Hamel, P., McPhearson, T. et al. Social-ecological and technological factors moderate the value of urban nature. Nat Sustain 2, 29–38 (2019).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing