Leveraging total factor productivity growth for sustainable and resilient farming

This article has been updated

Abstract

Increased global agricultural output since the 1990s has been largely driven by innovations that raised the efficiency of use of labour, land, capital and other inputs—referred to as total factor productivity (TFP) growth. Yet debates over the future of farming still weigh heavily on models of agricultural land use and socioecological trade-offs along traditional (partial factor productivity) growth paths of ‘intensification’ or ‘extensification’. Overlooking the role of TFP in the evolution of global agriculture not only obscures the changing drivers of productivity growth but also misses vital linkages with agricultural sustainability and farming system resilience. We describe two pathways for growth—technology-based and ecosystem-based—and link these in a heuristic framework that emphasizes sustainability and resilience outcomes in farming systems. Interdisciplinary research is urgently needed to empirically examine the dynamic interplay of TFP growth, farming system sustainability and resilience. Such insights will help to transform TFP growth as metric into actionable efforts on farms and beyond.

Fig. 1: Agricultural output growth over time.
Fig. 2: Heuristic framework for assessing sources of TFP growth.

Change history

  • 12 February 2019

    Line breaks have been added in Table 1.

References

  1. 1.

    Godfray, H. C. J. et al. Food security: the challenge of feeding 9 billion people. Science 327, 812–818 (2010).

    CAS  Article  Google Scholar 

  2. 2.

    Springmann, M. et al. Options for keeping the food system within environmental limits. Nature. https://doi.org/10.1038/s41586-018-0594-0 (2018).

    Article  Google Scholar 

  3. 3.

    Matson, P. A., Parton, W. J., Power, A. G. & Swift, M. J. Agricultural intensification and ecosystem properties. Science 277, 504–509 (1997).

    CAS  Article  Google Scholar 

  4. 4.

    Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R. & Polasky, S. Agricultural sustainability and intensive production practices. Nature 418, 671–677 (2002).

    CAS  Article  Google Scholar 

  5. 5.

    Foley, J. A. et al. Global consequences of land use. Science 309, 570–574 (2005).

    CAS  Article  Google Scholar 

  6. 6.

    West, P. C. et al. Leverage points for improving global food security and the environment. Science 345, 325–328 (2014).

    CAS  Article  Google Scholar 

  7. 7.

    Tscharntke, T. et al. Global food security, biodiversity conservation and the future of agricultural intensification. Biol. Cons. 151, 53–59 (2012).

    Article  Google Scholar 

  8. 8.

    Garnett, T. et al. Sustainable intensification in agriculture: premises and policies. Science 341, 33–34 (2013).

    CAS  Article  Google Scholar 

  9. 9.

    Rockström, J. et al. Sustainable intensification of agriculture for human prosperity and global sustainability. Ambio 46, 4–17 (2017).

    Article  Google Scholar 

  10. 10.

    Fuglie, K. in Productivity Growth in Agriculture: An International Perspective (eds Fuglie, K. O. et al.) 335–368 (CAB International, Wallingford, 2012).

  11. 11.

    Fuglie, K. Accounting for growth in global agriculture. BAE 4, 201–234 (2015).

    Google Scholar 

  12. 12.

    Fuglie, K. et al. Metrics of Sustainable Agricultural Productivity G20 MACS White Paper (2016).

  13. 13.

    Chavas, J. P. Dynamics, viability and resilience in bioeconomics. Annu. Rev. Resour. Econ. 7, 209–231 (2015).

    Article  Google Scholar 

  14. 14.

    Chavas, J. P. The Economics of Poverty Traps (eds Barrett, C. B et al.) 291–314 (Univ. Chicago Press, Chicago, 2018).

  15. 15.

    Lobell, D. B. et al. Prioritizing climate change adaptation needs for food security in 2030. Science 319, 607–610 (2008).

    CAS  Article  Google Scholar 

  16. 16.

    Baldoni, E., Coderoni, S. & Esposti, R. The productivity and environment nexus with farm-level data. The case of carbon footprint in Lombardy FADN farms. BAE 6, 119–137 (2017).

    Google Scholar 

  17. 17.

    Chambers, R. Thinking About Agricultural Productivity Accounting in the Presence of By-products White Paper No. 16–02 (Department of Agricultural and Resource Economics, Univ, Maryland, 2016).

  18. 18.

    Gollin, D. Handbook of Agricultural Economics 3825–3866 (Elsevier, Amsterdam, 2010).

  19. 19.

    Headey, D., Alauddin, M. & Rao, D. S. P. Explaining agricultural productivity growth: an international perspective. Agr. Econ. 41, 1–14 (2010).

    Article  Google Scholar 

  20. 20.

    Fuglie, K. O. & Wang, S. L. New evidence points to robust but uneven productivity growth in global agriculture. Glob. J. Emerg. Market Econ. 5, 23–30 (2013).

    Article  Google Scholar 

  21. 21.

    Binswanger, H. P. The measurement of technical change biases with many factors of production. Am. Econ. Rev. 64, 964–976 (1974).

  22. 22.

    Chavas, J. P., Shi, G., Nehring, R. & Stiegert, K. The effects of biotechnology on productivity and input demands in US agriculture. J. Agr. Appl. Econ. 50, 387–407 (2018).

  23. 23.

    Chavas, J. P. & Aliber, M. An analysis of economic efficiency in agriculture: a nonparametric approach. J. Agr. Resour. Econ. 18, 1–16 (1993).

    Google Scholar 

  24. 24.

    Klasen, S. et al. Economic and ecological trade-offs of agricultural specialization at different spatial scales. Ecol. Econ. 122, 111–1120 (2016).

    Article  Google Scholar 

  25. 25.

    Evenson, R. E. & Gollin, D. Assessing the impact of the Green Revolution, 1960 to 2000. Science 300, 758–762 (2003).

    CAS  Article  Google Scholar 

  26. 26.

    Avila, A. & Evenson, R. Handbook of Agricultural Economics 3713–3768 (Elsevier, Amsterdam, 2010).

  27. 27.

    Nin, A., Arndt, C., Hertel, T. & Preckel, P. Bridging the gap between partial and total factor productivity measures using direction distance functions. Am. J. Agri. Econ. 85, 928–42 (2003).

    Article  Google Scholar 

  28. 28.

    Khoury, C. K. et al. Increasing homogeneity in global food supplies and the implications for food security. Proc. Natl Acad. Sci. USA 111, 4001–4006

  29. 29.

    Pingali, P. Agricultural policy and nutrition outcomes—getting beyond the preoccupation with staple grains. Food Secur. 7, 583–591 (2015).

    Article  Google Scholar 

  30. 30.

    DeFries, R. et al. Metrics for land-scarce agriculture. Science 349, 238–240 (2015).

    CAS  Article  Google Scholar 

  31. 31.

    DeClerck, F. A. et al. Agricultural ecosystems and their services: the vanguard of sustainability? Curr. Opin. Environ. Sust. 23, 92–99 (2016).

  32. 32.

    Power, A. G. Ecosystem services and agriculture: tradeoffs and synergies. Philos. Trans. R. Soc. Lond. B 365, 2959–2971 (2010).

  33. 33.

    Campbell, B. et al. Agriculture production as a major driver of the Earth system exceeding planetary boundaries. Ecol. Soc. 22, 8 (2017).

  34. 34.

    Bennett, E. et al. Toward a more resilient agriculture. Solutions 5, 65–75 (2014).

    Google Scholar 

  35. 35.

    Chavas, J. P. On food security and the economic valuation of food. Food Policy 69, 58–67 (2017).

    Article  Google Scholar 

  36. 36.

    Measuring What Matters in Agriculture and Food Systems (UN Environment, The Economics of Ecosystems and Biodiversity, 2018).

  37. 37.

    Walker, B., Holling, C. S., Carpenter, S. & Kinzig, A. Resilience, adaptability and transformability in social–ecological systems. Ecol. Soc. 9, 5 (2004).

  38. 38.

    Folke, C. Resilience: the emergence of a perspective for social–ecological systems analyses. Glob. Environ. Change 16, 253–267 (2006).

    Article  Google Scholar 

  39. 39.

    Headey, D. M. Rethinking the global food crisis: the role of trade shocks. Food Policy 36, 136–146 (2011).

    Article  Google Scholar 

  40. 40.

    Bellemare, M. Rising food prices, food price volatility, and social unrest. Am. J. Agric. Econ. 97, 1–21 (2015).

    Article  Google Scholar 

  41. 41.

    Wu, J. Landscape sustainability science: ecosystem services and human well-being in changing landscapes. Landscape Ecol. 28, 999–1023 (2013).

    Article  Google Scholar 

  42. 42.

    Lewis, D. J., Barham, B. L. & Zimmerer, K. Spatial externalities in agriculture: empirical analysis, statistical identification, and policy implications. World Dev. 36, 1813–1829 (2008).

    Article  Google Scholar 

  43. 43.

    Bongiovanni, R. & Lowenberg-DeBoer, J. Precision agriculture and sustainability. Precis. Agric. 5, 359–387 (2004).

    Article  Google Scholar 

  44. 44.

    Aubert, B. A., Schroeder, A. & Grimaudo, J. IT as enabler of sustainable farming: an empirical analysis of farmers' adoption decision of precision agriculture technology. Decis. Support Syst. 54, 510–520 (2012).

    Article  Google Scholar 

  45. 45.

    Shi, G., Chavas, J. P. & Lauer, J. Commercialized transgenic traits, maize productivity and yield risk. Nat. Biotechnol. 31, 111–114 (2013).

    Article  Google Scholar 

  46. 46.

    Gilbert, N. A hard look at GM crops. Nature 497, 24–26 (2013).

    CAS  Article  Google Scholar 

  47. 47.

    Jacobsen, S. E., Sørensen, M., Pedersen, S. M. & Weiner, J. Feeding the world: genetically modified crops versus agricultural biodiversity. Agron. Sustain. Dev. 33, 651–662 (2013).

    Article  Google Scholar 

  48. 48.

    Hazell, P. B. Is there a future for small farms? Agric. Econ. 32, 93–101 (2005).

    Article  Google Scholar 

  49. 49.

    National Academies of Sciences, Engineering, and Medicine. Genetically Engineered Crops: Experiences and Prospects (National Academies Press, Washington DC, 2016).

    Google Scholar 

  50. 50.

    Rudel, T. K. et al. Agricultural intensification and changes in cultivated areas, 1970–2005. Proc. Natl Acad. Sci. USA 106, 20675–20680 (2009).

    CAS  Article  Google Scholar 

  51. 51.

    Hertel, T. W., Ramankutty, N. & Baldosa, U. L. C. Global market integration increases likelihood that a future African Green Revolution could increase crop land use and CO2 emissions. Proc. Natl Acad. Sci. USA 111, 13799–13804 (2014).

    CAS  Article  Google Scholar 

  52. 52.

    Fuglie, K., Wang, S. L. & Ball, V. E. Productivity Growth in Agriculture: An International Perspective (CAB International, Wallingford, 2012).

  53. 53.

    Robertson, P. G. et al. Cellulosic biofuel contributions to a sustainable energy future: choices and outcomes. Science 356, eeal2324 (2017).

    Article  Google Scholar 

  54. 54.

    Cox, T. S. et al. Prospects for developing perennial grain crops. Bioscience 56, 649–659 (2006).

    Article  Google Scholar 

  55. 55.

    Murgai, R., Ali, M. & Byerlee, D. Productivity growth and sustainability in post-Green Revolution agriculture: the case of the Indian and Pakistan Punjabs. World Bank Res. Obser. 16, 199–218 (2001).

    Article  Google Scholar 

  56. 56.

    Rada, N. E. & Fuglie, K. O. New perspectives on farm size and productivity. Food Policy. https://doi.org/10.1016/j.foodpol.2018.03.015 (2018).

  57. 57.

    Ruben, R. Smallholder Farming in Less-Favoured Areas: Options for Pro-Poor and Sustainable Livelihoods (Wageningen Univ., Wageningen, 2005).

    Google Scholar 

  58. 58.

    Liu, J. et al. Coupled human and natural systems. Ambio 36, 639–649 (2007).

    Article  Google Scholar 

  59. 59.

    Meals, D. W., Dressing, S. A. & Davenport, T. E. Lag time in water quality response to best management practices: a review. J. Environ. Qual. 39, 85–96 (2009).

    Article  Google Scholar 

  60. 60.

    World Commission on Environment and Development. Our Common Future (Oxford Univ. Press, Oxford, 1987).

Download references

Author information

Affiliations

Authors

Contributions

O.T.C., N.R. and B.L.B. conceived the paper. O.T.C., B.L.B. and G.K.M. developed the framework. G.K.M. designed the figures and table with input from the others. O.T.C., B.L.B., G.K.M., N.R. and J.-P.C. contributed ideas and wrote the paper.

Corresponding author

Correspondence to Oliver T. Coomes.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Coomes, O.T., Barham, B.L., MacDonald, G.K. et al. Leveraging total factor productivity growth for sustainable and resilient farming. Nat Sustain 2, 22–28 (2019). https://doi.org/10.1038/s41893-018-0200-3

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing