Policy design for the Anthropocene

Abstract

Today, more than ever, ‘Spaceship Earth’ is an apt metaphor as we chart the boundaries for a safe planet1. Social scientists both analyse why society courts disaster by approaching or even overstepping these boundaries and try to design suitable policies to avoid these perils. Because the threats of transgressing planetary boundaries are global, long-run, uncertain and interconnected, they must be analysed together to avoid conflicts and take advantage of synergies. To obtain policies that are effective at both international and local levels requires careful analysis of the underlying mechanisms across scientific disciplines and approaches, and must take politics into account. In this Perspective, we examine the complexities of designing policies that can keep Earth within the biophysical limits favourable to human life.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Planetary boundaries, tipping points and policies.
Fig. 2: Planetary boundaries and policy trade-offs.

References

  1. 1.

    Boulding, K. E. in ​Environmental Quality in a Growing Economy (ed. Daly, H. E.) 3–14 (Johns Hopkins Univ. Press, Baltimore, 1966). Boulding seems to have been the first economist to publish thoughts on the consequences (in terms of circular economy and policy instruments needed) of the spaceship economy analogy.

  2. 2.

    Crutzen, P. J. Geology of mankind. Nature 415, 23–23 (2002).

    CAS  Article  Google Scholar 

  3. 3.

    Rockström, J. et al. A safe operating space for humanity. Nature 461, 472–475 (2009). This paper sets out the scientific basis for the planetary boundaries framework for maintaining the Earth system in a Holocene-like state.

    Article  Google Scholar 

  4. 4.

    Rockström, J. et al. Planetary boundaries: exploring the safe operating space for humanity. Ecol. Soc. 14, 32 (2009).

    Article  Google Scholar 

  5. 5.

    Hansen, J. et al. Target atmospheric CO2: where should humanity aim? Open Atmos. Sci. J. 2, 217–231 (2008).

    CAS  Article  Google Scholar 

  6. 6.

    Azar, C. & Rodhe, H. Targets for stabilization of atmospheric CO2. Science 276, 1818–1819 (1997).

    CAS  Article  Google Scholar 

  7. 7.

    Vitousek, P. M., Mooney, H. A., Lubchenco, J. & Melillo, J. M. Human domination of Earth’s ecosystems. Science 277, 494–499 (1997).

    CAS  Article  Google Scholar 

  8. 8.

    Lenton, T. M. et al. Tipping elements in the Earth’s climate system. Proc. Natl Acad. Sci. USA 105, 1786–1793 (2008).

    CAS  Article  Google Scholar 

  9. 9.

    Waters, C. N. et al. The Anthropocene is functionally and stratigraphically distinct from the Holocene. Science 351, aad2622 (2016).

    Article  Google Scholar 

  10. 10.

    Steffen, W. et al. Trajectories of the Earth system in the Anthropocene. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1810141115 (2018). This paper describes the high risk of a ‘Hothouse Earth’ future if the planetary boundaries are transgressed and an Earth system threshold is crossed.

    Article  Google Scholar 

  11. 11.

    Dirzo, R. et al. Defaunation in the Anthropocene Science 345, 401–406 (2014).

    CAS  Article  Google Scholar 

  12. 12.

    Biggs, R. et al. Regime Shifts: Sourcebook in Theoretical Ecology (Univ. of California Press, Berkeley, 2012).

    Google Scholar 

  13. 13.

    Biggs, R., Carpenter, S. R. & Brock, W. A. Turning back from the brink: detecting an impending regime shift in time to avert it. Proc. Natl Acad. Sci. USA 106, 826–831 (2009).

    CAS  Article  Google Scholar 

  14. 14.

    Margolis, M. & Nævdal, E. Safe minimum standards in dynamic resource problems: conditions for living on the edge of risk. Environ. Resour. Econ. 40, 401–423 (2008).

    Article  Google Scholar 

  15. 15.

    Polasky, S., De Zeeuw, A. & Wagner, F. Optimal management with potential regime shifts. J. Environ. Econ. Manage. 62, 229–240 (2011).

    Article  Google Scholar 

  16. 16.

    Smith, V. K. in Oxford Research Encyclopedia of Environmental Science (2017); https://doi.org/10.1093/acrefore/9780199389414.013.386

  17. 17.

    Biermann, F. Planetary boundaries and Earth system governance: exploring the links. Ecol. Econ. 81, 4–9 (2012).

    Article  Google Scholar 

  18. 18.

    Biermann, F. et al. Navigating the Anthropocene: improving Earth system governance. Science 335, 1306–1307 (2012). This paper delivers important insights into how to understand the societal and political challenges associated with planetary boundaries and suggests viable global institutional architectures necessary for politics and governance to span all planetary boundaries while avoiding undesirable environmental shifts.

    CAS  Article  Google Scholar 

  19. 19.

    Dryzek, J. Institutions for the Anthropocene: governance in a changing Earth system. Br. J. Polit. Sci. 46, 937–956 (2016).

    Article  Google Scholar 

  20. 20.

    Kotzé, L. Environmental Law and Governance for the Anthropocene (Hart, Oxford, 2017).

    Google Scholar 

  21. 21.

    Van Asselt, H. in Research Handbook on International Law and Natural Resources (ed. Morgera, E. & Kuloveski, K.) 473–495 (Elgar, Cheltenham, 2016).

  22. 22.

    Underdal, A. Complexity and challenges of long term environmental governance. Glob. Environ. Change 20, 386–393 (2010).

    Article  Google Scholar 

  23. 23.

    Van den Bergh, J., Folke, C., Polasky, S., Scheffer, M. & Steffen, W. What if solar energy becomes really cheap? A thought experiment on environmental problem shifting. Curr. Opin. Environ. Sustain. 14, 170–179 (2015).

    Article  Google Scholar 

  24. 24.

    Barbier, E. B. Capitalizing on Nature: Ecosystems as Natural Assets (Cambridge Univ. Press, Cambridge, 2011).

    Google Scholar 

  25. 25.

    Crépin, A. S. & Folke, C. The economy, the biosphere and planetary boundaries: towards biosphere economics. Int. Rev. Environ. Econ. 8, 57–100 (2014).

    Article  Google Scholar 

  26. 26.

    Sims, C. & Finnoff, D. Opposing irreversibilities and tipping point uncertainty. J. Environ. Econ. Manage. 3, 985–1022 (2016).

    Google Scholar 

  27. 27.

    Lipsey, R. G. & Lancaster, K. The general theory of second best. Rev. Econ. Stud. 24, 11–32 (1956).

    Article  Google Scholar 

  28. 28.

    Goulder, L. H. et al. The cost-effectiveness of alternative instruments for environmental protection in a second-best setting. J. Public Econ. 72, 329–360 (1999).

    Article  Google Scholar 

  29. 29.

    Parry, I. W. A second-best analysis of environmental subsidies. Int. Tax Public Finance 5, 153–170 (1998).

    Article  Google Scholar 

  30. 30.

    Sterner, T. Fuel Taxes and the Poor: The Distributional Effects of Gasoline Taxation and Their Implications for Climate Policy (Routledge, Washington, 2012).

    Google Scholar 

  31. 31.

    Barbier, E. B. Nature and Wealth: Overcoming Environmental Scarcity and Inequality (Palgrave Macmillan, London, 2015).

    Google Scholar 

  32. 32.

    Von Blottnitz, H., Rabl, A., Boiadjiev, D., Taylor, T. & Arnold, S. Damage costs of nitrogen fertilizer in Europe and their internalization. J. Environ. Plann. Manag. 49, 413–433 (2006).

    Article  Google Scholar 

  33. 33.

    Bosquet, B. Environmental tax reform: does it work? A survey of the empirical evidence. Ecol. Econ. 34, 19–32 (2000).

    Article  Google Scholar 

  34. 34.

    Sterner, T. Fuel taxes: an important instrument for climate policy. Energy Policy 35, 3194–3202 (2007).

    Article  Google Scholar 

  35. 35.

    Nelson, E. et al. Modelling multiple ecosystem services, biodiversity conservation, commodity production, and trade-offs at landscape scales. Front. Ecol. Environ. 7, 4–11 (2009).

    Article  Google Scholar 

  36. 36.

    Lévay, P. Z., Drossinos, Y. & Thiel, C. The effect of fiscal incentives on market penetration of electric vehicles: a pairwise comparison of total cost of ownership. Energy Policy 105, 524–533 (2017).

    Article  Google Scholar 

  37. 37.

    Sterner, T. & Coria, J. Policy Instruments for Environmental and Natural Resource Management 2nd edn (RFF, Washington DC, 2012). This work provides a comprehensive and accessible overview of different environmental policy instruments and their pros and cons in various settings, including institutional and political contexts.

    Google Scholar 

  38. 38.

    Somanathan, E. et al. in Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds. Edenhofer, O. et al.) Ch.15 (Cambridge Univ. Press, Cambridge, 2014).

  39. 39.

    Azar, C. & Schneider, S. H. Are the economic costs of stabilising the atmosphere prohibitive? Ecol. Econ. 42, 73–80 (2002).

    Article  Google Scholar 

  40. 40.

    Stern, N. H. et al. Stern Review: The Economics of Climate Change (Cambridge Univ. Press, Cambridge, 2006).

  41. 41.

    Bateman, I. J. et al. Bringing ecosystem services into economic decision making: land use in the United Kingdom. Science 341, 45–50 (2013).

    CAS  Article  Google Scholar 

  42. 42.

    Köke, S. & Lange, A. Negotiating environmental agreements under ratification constraints. J. Environ. Econ. Manage. 83, 90–106 (2017).

    Article  Google Scholar 

  43. 43.

    Barrett, S. & Dannenberg, A. Tipping versus cooperating to supply a public good. J. Eur. Econ. Assoc. 15, 910–941 (2017).

    Article  Google Scholar 

  44. 44.

    Crocker, T. D. & Tschirhart, J. Ecosystems, externalities, and economies. Env. Resource Econ. 2, 551–567 (1992).

    Google Scholar 

  45. 45.

    Sovacol, B. Reviewing, reforming, and rethinking global energy subsidies: toward a political economy research agenda. Ecol. Econ. 135, 150–163 (2017).

    Article  Google Scholar 

  46. 46.

    Wesseh, P. & Lin, B. Refined oil import subsidies removal in Ghana: a ‘triple’ win? J. Clean. Prod. 139, 113–121 (2016).

    Article  Google Scholar 

  47. 47.

    Biggs, R. et al. Toward principles for enhancing the resilience of ecosystem services. Annu. Rev. Environ. Resour. 37, 421–448 (2012).

    Article  Google Scholar 

  48. 48.

    Levin, S. et al. Social-ecological systems as complex adaptive systems: modelling and policy implications. Environ. Dev. Econ. 18, 111–132 (2013).

    Article  Google Scholar 

  49. 49.

    Crépin, A. S. Using fast and slow processes to manage resources with thresholds. Environ. Resour. Econ. 36, 191–213 (2007).

    Article  Google Scholar 

  50. 50.

    Heijdra, B. J. & Heijnen, P. Environmental abatement and the macroeconomy in the presence of ecological thresholds. Environ. Resour. Econ. 55, 47–70 (2013).

    Article  Google Scholar 

  51. 51.

    Weitzman, M. L. Prices vs. quantities. Rev. Econ. Stud. 41, 477–91 (1974).

    Article  Google Scholar 

  52. 52.

    Ostrom, E. Governing the Commons (Cambridge Univ. Press, Cambridge, 1990).

    Google Scholar 

  53. 53.

    Bateman. et al. Conserving tropical biodiversity via market forces and spatial targeting. Proc. Natl Acad. Sci. USA 112, 7408–7413 (2015).

    CAS  Article  Google Scholar 

  54. 54.

    Sedjo, R. Property rights, genetic resources, and biotechnological change. J. Law Econ. 35, 199–213 (1992).

    Article  Google Scholar 

  55. 55.

    Costello, C. et al. Global fishery prospects under contrasting management regimes. Proc. Natl Acad. Sci. USA 113, 5125–5129 (2016).

    CAS  Article  Google Scholar 

  56. 56.

    Farley, J. Ecosystem services: the economics debate. Ecosyst. Serv. 1, 40–49 (2012).

    Article  Google Scholar 

  57. 57.

    Vatn, A., Barton, D. N., Lindhjem, H., Movik, S. & Ring, I. Can Markets Protect Biodiversity? An Evaluation of Different Financial Mechanisms. Noragric Report No. 60 (Department of International Environment and Development Studies, Norwegian Univ. Life Sciences, 2011).

  58. 58.

    Meckling, J., Sterner, T. & Wagner, G. Policy sequencing toward decarbonisation. Nat. Energy 2, 918 (2017).

    Article  Google Scholar 

  59. 59.

    Campos, N. F. & Giovannoni, F. Lobbying, corruption and political influence. Public Choice 131, 1–21 (2007).

    Article  Google Scholar 

  60. 60.

    Harstad, B. & Svensson, J. Bribes, lobbying, and development. Am. Polit. Sci. Rev. 105, 46–63 (2011).

    Article  Google Scholar 

  61. 61.

    Fischer, C. & Salant, S. Balancing the carbon budget for oil: the distributive effects of alternative policies. Eur. Econ. Rev. 99, 191–215 (2017).

    Article  Google Scholar 

  62. 62.

    Aidt, T. S. in Encyclopedia of Energy, Natural Resource, and Environmental Economics (ed. Shogren, J. F.) 296–299 (Elsevier Science, Amsterdam, 2013).

  63. 63.

    Bertram, C. et al. Complementing carbon prices with technology policies to keep climate targets within reach. Nat. Clim. Change 5, 235–239 (2015).

    CAS  Article  Google Scholar 

  64. 64.

    Aghion, P., Dechezleprêtre, A., Hemous, D., Martin, R. & Van Reenen, J. Carbon taxes, path dependency, and directed technical change: evidence from the auto industry. J. Polit. Econ. 124, 1–51 (2016).

    Article  Google Scholar 

  65. 65.

    Acemoglu, D., Aghion, P., Bursztyn, L. & Hemous, D. The environment and directed technical change. Am. Econ. Rev. 102, 131–66 (2012). This paper analyses how policies should be designed to simultaneously strengthen innovation in technologies that facilitate sustainable growth and weaken the development of technologies that threaten it.

    Article  Google Scholar 

  66. 66.

    Popp, D. Induced innovation and energy prices. Am. Econ. Rev. 92, 160–180 (2002).

    Article  Google Scholar 

  67. 67.

    Hasselmann, K. et al. The challenge of long term climate change. Science 302, 1923–1925 (2003).

    CAS  Article  Google Scholar 

  68. 68.

    Bongaarts, J. & O’Neill, B. C. Global warming policy: is population left out in the cold? Science 361, 650–652 (2018).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We are grateful for funding from the Stockholm Resilience Centre and BECC (Biodiversity and Ecosystem services in a Changing Climate) as well as Mistra Carbon Exit. Comments from S. Barrett, P. Dasgupta and B. Groom are gratefully acknowledged.

Author information

Affiliations

Authors

Contributions

All authors met for a two-day workshop and have contributed in every phase. The editing was led by an inner circle of authors including I.B., I.v.d.B., A.-S.C., C.F., J.H., O.J.-S., J.R., H.G.S., W.S., G.W., J.E.W., T.S. and E.B.B. The work was coordinated by T.S.

Corresponding author

Correspondence to Thomas Sterner.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sterner, T., Barbier, E.B., Bateman, I. et al. Policy design for the Anthropocene. Nat Sustain 2, 14–21 (2019). https://doi.org/10.1038/s41893-018-0194-x

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing