Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Wastewater treatment for carbon capture and utilization

A paradigm shift is underway in wastewater treatment as the industry heads toward ~3% of global electricity consumption and contributes ~1.6% of greenhouse gas emissions. Although incremental improvements to energy efficiency and renewable energy recovery are underway, studies considering wastewater for carbon capture and utilization are few. This Review summarizes alternative wastewater treatment pathways capable of simultaneous CO2 capture and utilization, and demonstrates the environmental and economic benefits of microbial electrochemical and phototrophic processes. Preliminary estimates demonstrate that re-envisioning wastewater treatment may entirely offset the industry’s greenhouse gas footprint and make it a globally significant contributor of negative carbon emissions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: The different CCU processes that can be integrated with wastewater treatment.
Fig. 2: Preliminary estimates of CCU benefits from an example integrated MECC–microalgae process compared with a conventional activated-sludge process.
Fig. 3: The low-hanging fruit on co-location of emission-point-source and water-resource recovery plants.


  1. 1.

    den Elzen, M. et al. The Emissions Gap Report 2017 (United Nations Environment Programme 2017). A detailed quantitative report that demonstrates the need for negative emission.

  2. 2.

    Fuss, S. The 1.5°C Target, Political Implications, and the Role of BECCS (Oxford Univ. Press, 2017).

  3. 3.

    Minx, J. C. et al. Fast growing research on negative emissions. Environ. Res. Lett. 12, 035007 (2017).

    Article  Google Scholar 

  4. 4.

    Rogelj, J. et al. Energy system transformations for limiting end-of-century warming to below 1.5 °C. Nat. Clim. Change 5, 519–527 (2015).

    Article  Google Scholar 

  5. 5.

    Rau, G. H. et al. Direct electrolytic dissolution of silicate minerals for air CO2 mitigation and carbon-negative H2 production. Proc. Natl Acad. Sci. USA 110, 10095–10100 (2013).

    CAS  Article  Google Scholar 

  6. 6.

    Alex, S. Tapping sewage as a source of useful materials. Chem. Eng. News 95, 30–34 (2017).

    Google Scholar 

  7. 7.

    Mohan, S. V. et al. Waste biorefinery: a new paradigm for a sustainable bioelectro economy. Trends Biotechnol. 34, 852–855 (2016).

    CAS  Article  Google Scholar 

  8. 8.

    Mateo-Sagasta, J., Raschid-Sally, L. & Thebo, A. in Wastewater: Economic Asset in an Urbanizing World (eds Drechsel, P., Qadir, M. & Wichelns, D.) Ch. 2, 15–38 (Springer, 2015).

  9. 9.

    Sato, T. et al. Global, regional, and country level need for data on wastewater generation, treatment, and use. Agric. Water Manag. 130, 1–13 (2013).

    Article  Google Scholar 

  10. 10.

    McCarty, P. L., Bae, J. & Kim, J. Domestic wastewater treatment as a net energy producer–can this be achieved? Environ. Sci. Technol. 45, 7100–7106 (2011).

    CAS  Article  Google Scholar 

  11. 11.

    Li, W.-W., Yu, H.-Q. & Rittmann, B. E. Chemistry: reuse water pollutants. Nature 528, 29–31 (2015).

    CAS  Article  Google Scholar 

  12. 12.

    Rosso, D. & Stenstrom, M. K. The carbon-sequestration potential of municipal wastewater treatment. Chemosphere 70, 1468–1475 (2008).

    CAS  Article  Google Scholar 

  13. 13.

    Shahabadi, M. B., Yerushalmi, L. & Haghighat, F. Impact of process design on greenhouse gas (GHG) generation by wastewater treatment plants. Water Res. 43, 2679–2687 (2009).

    Article  Google Scholar 

  14. 14.

    IPCC Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) (Cambridge Univ. Press, 2014).

  15. 15.

    Global Anthropogenic Non-CO 2 Greenhouse Gas Emissions: 1990–2030 (USEPA, 2012).

  16. 16.

    Griffith, D. R., Barnes, R. T. & Raymond, P. A. Inputs of fossil carbon from wastewater treatment plants to US rivers and oceans. Environ. Sci. Technol. 43, 5647–5651 (2009).

    CAS  Article  Google Scholar 

  17. 17.

    Inventory of US Greenhouse Gas Emissions and Sinks: 1990–2015 (USEPA, 2017).

  18. 18.

    Shizas, I. & Bagley, D. M. Experimental determination of energy content of unknown organics in municipal wastewater streams. J. Energy Engin. 130, 45–53 (2004).

    Article  Google Scholar 

  19. 19.

    Heidrich, E., Curtis, T. & Dolfing, J. Determination of the internal chemical energy of wastewater. Environ. Sci. Technol. 45, 827–832 (2010).

    Article  Google Scholar 

  20. 20.

    Bradsher, K. & Friedman, L. China unveils an ambitious plan to curb climate change emissions. New York Times (19 December 2017).

  21. 21.

    Rogelj, J. et al. Paris Agreement climate proposals need a boost to keep warming well below 2 °C. Nature 534, 631–639 (2016).

    CAS  Article  Google Scholar 

  22. 22.

    Salek, S. S. et al. Mineral CO2 sequestration by environmental biotechnological processes. Trends Biotechnol. 31, 139–146 (2013).

    CAS  Article  Google Scholar 

  23. 23.

    Wang, H. & Ren, Z. J. A comprehensive review of microbial electrochemical systems as a platform technology. Biotechnol. Adv. 31, 1796–1807 (2013).

    Article  Google Scholar 

  24. 24.

    Lu, L., Huang, Z., Rau, G. H. & Ren, Z. J. Microbial electrolytic carbon capture for carbon negative and energy positive wastewater treatment. Environ. Sci. Technol. 49, 8193–8201 (2015). Demonstrated carbon-negative MECC process for wastewater treatment.

    CAS  Article  Google Scholar 

  25. 25.

    Lu, L. et al. Self-sustaining carbon capture and mineralization via electrolytic carbonation of coal fly ash. Chem. Eng. J. 306, 330–335 (2016).

    CAS  Article  Google Scholar 

  26. 26.

    Zhu, X., Hatzell, M. C. & Logan, B. E. Microbial reverse-electrodialysis electrolysis and chemical-production cell for H2 production and CO2 sequestration. Environ. Sci. Technol. Lett. 1, 231–235 (2014).

    CAS  Article  Google Scholar 

  27. 27.

    Zhu, X. & Logan, B. E. Microbial electrolysis desalination and chemical-production cell for CO2 sequestration. Bioresour. Technol. 159, 24–29 (2014).

    CAS  Article  Google Scholar 

  28. 28.

    Huang, Z., Jiang, D., Lu, L. & Ren, Z. J. Ambient CO2 capture and storage in bioelectrochemically mediated wastewater treatment. Bioresour. Technol. 215, 380–385 (2016).

    CAS  Article  Google Scholar 

  29. 29.

    Pandey, P. et al. Recent advances in the use of different substrates in microbial fuel cells toward wastewater treatment and simultaneous energy recovery. Appl. Energy 168, 706–723 (2016).

    CAS  Article  Google Scholar 

  30. 30.

    Lu, L. et al. Hydrogen production, methanogen inhibition and microbial community structures in psychrophilic single-chamber microbial electrolysis cells. Energy Environ. Sci. 4, 1329–1336 (2011).

    CAS  Article  Google Scholar 

  31. 31.

    Li, W.-W., Yu, H.-Q. & He, Z. Towards sustainable wastewater treatment by using microbial fuel cells-centered technologies. Energy Environ. Sci. 7, 911–924 (2014).

    CAS  Article  Google Scholar 

  32. 32.

    Lu, L. & Ren, Z. J. Microbial electrolysis cells for waste biorefinery: A state of the art review. Bioresour. Technol. 215, 254–264 (2016).

    CAS  Article  Google Scholar 

  33. 33.

    Sun, M. et al. An MEC-MFC-coupled system for biohydrogen production from acetate. Environ. Sci. Technol. 42, 8095–8100 (2008).

    CAS  Article  Google Scholar 

  34. 34.

    Lu, L. et al. Microbial photoelectrosynthesis for self-sustaining hydrogen generation. Environ. Sci. Technol. 51, 13494–13501 (2017).

    CAS  Article  Google Scholar 

  35. 35.

    Rozendal, R. A. et al. Towards practical implementation of bioelectrochemical wastewater treatment. Trends Biotechnol. 26, 450–459 (2008).

    CAS  Article  Google Scholar 

  36. 36.

    Lee, H.-S., Vermaas, W. F. J. & Rittmann, B. E. Biological hydrogen production: prospects and challenges. Trends Biotechnol. 28, 262–271 (2010).

    CAS  Article  Google Scholar 

  37. 37.

    Rabaey, K. & Rozendal, R. A. Microbial electrosynthesis—revisiting the electrical route for microbial production. Nat. Rev. Microbiol. 8, 706–716 (2010). Comprehensive review that revealed the potential of MES.

    CAS  Article  Google Scholar 

  38. 38.

    Blankenship, R. E. et al. Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science 332, 805–809 (2011).

    CAS  Article  Google Scholar 

  39. 39.

    Claassens, N. J. et al. Harnessing the power of microbial autotrophy. Nat. Rev. Microbiol. 14, 692–706 (2016).

    CAS  Article  Google Scholar 

  40. 40.

    Patil, S. A. et al. A logical data representation framework for electricity-driven bioproduction processes. Biotechnol. Adv. 33, 736–744 (2015).

    CAS  Article  Google Scholar 

  41. 41.

    Christodoulou, X., Okoroafor, T., Parry, S. & Velasquez-Orta, S. B. The use of carbon dioxide in microbial electrosynthesis: Advancements, sustainability and economic feasibility. J. CO 2 Util. 18, 390–399 (2017)..

  42. 42.

    Jiang, Y. et al. Carbon dioxide and organic waste valorization by microbial electrosynthesis and electro-fermentation. Water Res. 149, 42–55 (2019).

    CAS  Article  Google Scholar 

  43. 43.

    Nevin, K. P. et al. Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms. Appl. Environ. Microbiol. 77, 2882–2886 (2011).

    CAS  Article  Google Scholar 

  44. 44.

    Zaybak, Z., Pisciotta, J. M., Tokash, J. C. & Logan, B. E. Enhanced start-up of anaerobic facultatively autotrophic biocathodes in bioelectrochemical systems. J. Biotechnol. 168, 478–485 (2013).

    CAS  Article  Google Scholar 

  45. 45.

    Bajracharya, S. et al. Application of gas diffusion biocathode in microbial electrosynthesis from carbon dioxide. Environ. Sci. Pollut. Res. 23, 22292–22308 (2016).

    CAS  Article  Google Scholar 

  46. 46.

    Arends, J. B., Patil, S. A., Roume, H. & Rabaey, K. Continuous long-term electricity-driven bioproduction of carboxylates and isopropanol from CO2 with a mixed microbial community. J. CO 2 Util. 20, 141–149 (2017).

  47. 47.

    Blanchet, E. et al. Importance of the hydrogen route in up-scaling electrosynthesis for microbial CO2 reduction. Energy Environ. Sci. 8, 3731–3744 (2015).

    CAS  Article  Google Scholar 

  48. 48.

    Deutzmann, J. S., Sahin, M. & Spormann, A. M. Extracellular enzymes facilitate electron uptake in biocorrosion and bioelectrosynthesis. mBio 6, e00496–15 (2015).

    Article  Google Scholar 

  49. 49.

    Aryal, N., Ammam, F., Patil, S. A. & Pant, D. An overview of cathode materials for microbial electrosynthesis of chemicals from carbon dioxide. Green Chem. 19, 5748–5760 (2017).

    CAS  Article  Google Scholar 

  50. 50.

    Barry, A. et al. National Algal Biofuels Technology Review (US Department of Energy, Office of Energy Efficiency and Renewable Energy Bioenergy Technologies Office, 2016).

  51. 51.

    Moody, J. W., McGinty, C. M. & Quinn, J. C. Global evaluation of biofuel potential from microalgae. Proc. Natl Acad. Sci. USA 111, 8691–8696 (2014).

    CAS  Article  Google Scholar 

  52. 52.

    Shoener, B., Bradley, I., Cusick, R. & Guest, J. Energy positive domestic wastewater treatment: the roles of anaerobic and phototrophic technologies. Environ. Sci. Process. Impacts 16, 1204–1222 (2014). A quantitative, comparative review on energy recovery potential.

    CAS  Article  Google Scholar 

  53. 53.

    Li, Y. et al. Quantitative multiphase model for hydrothermal liquefaction of algal biomass. Green Chem. 19, 1163–1174 (2017).

    CAS  Article  Google Scholar 

  54. 54.

    Leow, S. et al. Prediction of microalgae hydrothermal liquefaction products from feedstock biochemical composition. Green Chem. 17, 3584–3599 (2015).

    CAS  Article  Google Scholar 

  55. 55.

    Geider, R. J. & La Roche, J. Redfield revisited: variability of C:N:P in marine microalgae and its biochemical basis. Eur. J. Phycol. 37, 1–17 (2002).

    Article  Google Scholar 

  56. 56.

    Klausmeier, C. A., Litchman, E., Daufresne, T. & Levin, S. Phytoplankton stoichiometry. Ecol. Res. 23, 479–485 (2008).

    Article  Google Scholar 

  57. 57.

    Tchobanoglous, G. et al. Wastewater Engineering: Treatment and Resource Recovery (McGraw-Hill, 2014).

  58. 58.

    Gardner-Dale, D., Bradley, I. & Guest, J. Influence of solids residence time and carbon storage on nitrogen and phosphorus recovery by microalgae across diel cycles. Water Res. 121, 231–239 (2017).

    CAS  Article  Google Scholar 

  59. 59.

    Valverde-Pérez, B., Ramin, E., Smets, B. F. & Plósz, B. G. EBP2R–an innovative enhanced biological nutrient recovery activated sludge system to produce growth medium for green microalgae cultivation. Water Res. 68, 821–830 (2015).

    Article  Google Scholar 

  60. 60.

    Becker, E. Micro-algae as a source of protein. Biotechnol. Adv. 25, 207–210 (2007).

    CAS  Article  Google Scholar 

  61. 61.

    Golueke, C. G., Oswald, W. J. & Gotaas, H. B. Anaerobic digestion of algae. Appl. Microbiol. 5, 47–55 (1957).

    CAS  Google Scholar 

  62. 62.

    Laurens, L. M. et al. Development of algae biorefinery concepts for biofuels and bioproducts; a perspective on process-compatible products and their impact on cost-reduction. Energy Environ. Sci. 10, 1716–1738 (2017).

    CAS  Article  Google Scholar 

  63. 63.

    Mooij, P. R. et al. Survival of the fattest. Energy Environ. Sci. 6, 3404–3406 (2013).

    Article  Google Scholar 

  64. 64.

    Hu, Y., Hao, X., van Loosdrecht, M. & Chen, H. Enrichment of highly settleable microalgal consortia in mixed cultures for effluent polishing and low-cost biomass production. Water Res. 125, 11–22 (2017).

    CAS  Article  Google Scholar 

  65. 65.

    Ptacnik, R. et al. Diversity predicts stability and resource use efficiency in natural phytoplankton communities. Proc. Natl Acad. Sci. USA 105, 5134–5138 (2008).

    CAS  Article  Google Scholar 

  66. 66.

    Rich, L. G. Unit Processes of Sanitary Engineering (John Wiley and Sons, 1963).

  67. 67.

    Luo, S., Berges, J. A., He, Z. & Young, E. B. Algal-microbial community collaboration for energy recovery and nutrient remediation from wastewater in integrated photobioelectrochemical systems. Algal Res. 24, 527–539 (2016).

    Article  Google Scholar 

  68. 68.

    Wu, H. et al. Strategies and techniques to enhance constructed wetland performance for sustainable wastewater treatment. Environ. Sci. Pollut. Res. 22, 14637–14650 (2015).

    Article  Google Scholar 

  69. 69.

    Wu, S. et al. Development of constructed wetlands in performance intensifications for wastewater treatment: a nitrogen and organic matter targeted review. Water Res. 57, 40–55 (2014).

    CAS  Article  Google Scholar 

  70. 70.

    Mander, Ü. et al. Greenhouse gas emission in constructed wetlands for wastewater treatment: a review. Ecol. Eng. 66, 19–35 (2014).

    Article  Google Scholar 

  71. 71.

    Mander, Ü. et al. Gaseous fluxes in the nitrogen and carbon budgets of subsurface flow constructed wetlands. Sci. Total Environ. 404, 343–353 (2008).

    CAS  Article  Google Scholar 

  72. 72.

    García, J. et al. Anaerobic biodegradation tests and gas emissions from subsurface flow constructed wetlands. Bioresour. Technol. 98, 3044–3052 (2007).

    Article  Google Scholar 

  73. 73.

    Brix, H., Sorrell, B. K. & Lorenzen, B. Are phragmites-dominated wetlands a net source or net sink of greenhouse gases? Aquat. Bot. 69, 313–324 (2001). Shows the complexity of constructed wetlands in greenhouse gas emissions.

  74. 74.

    de Klein, J. J. & van der Werf, A. K. Balancing carbon sequestration and GHG emissions in a constructed wetland. Ecol. Eng. 66, 36–42 (2014).

    Article  Google Scholar 

  75. 75.

    Lu, L., Xing, D. & Ren, Z. J. Microbial community structure accompanied with electricity production in a constructed wetland plant microbial fuel cell. Bioresour. Technol. 195, 115–121 (2015).

    CAS  Article  Google Scholar 

  76. 76.

    Qambrani, N. A. et al. Biochar properties and eco-friendly applications for climate change mitigation, waste management, and wastewater treatment: a review. Renew. Sustain. Energy Rev. 79, 255–273 (2017).

    CAS  Article  Google Scholar 

  77. 77.

    Hossain, M. K. et al. Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar. J. Environ. Manage. 92, 223–228 (2011).

    CAS  Article  Google Scholar 

  78. 78.

    Bird, M. I. et al. Algal biochar–production and properties. Bioresour. Technol. 102, 1886–1891 (2011).

    CAS  Article  Google Scholar 

  79. 79.

    Huggins, T. M., Haeger, A., Biffinger, J. C. & Ren, Z. J. Granular biochar compared with activated carbon for wastewater treatment and resource recovery. Water Res. 94, 225–232 (2016).

    CAS  Article  Google Scholar 

  80. 80.

    Xiao, X. et al. Insight into multiple and multilevel structures of biochars and their potential environmental applications: a critical review. Environ. Sci. Technol. 52, 5027–5047 (2018).

    CAS  Article  Google Scholar 

  81. 81.

    Woolf, D. et al. Sustainable biochar to mitigate global climate change. Nat. Commun. 1, 56 (2010). Demonstrates the potential of biochar for GHG sequestration.

  82. 82.

    Méndez, A., Gómez, A., Paz-Ferreiro, J. & Gascó, G. Effects of sewage sludge biochar on plant metal availability after application to a Mediterranean soil. Chemosphere 89, 1354–1359 (2012).

    Article  Google Scholar 

  83. 83.

    Hossain, M. K., Strezov, V., Chan, K. Y. & Nelson, P. F. Agronomic properties of wastewater sludge biochar and bioavailability of metals in production of cherry tomato (Lycopersicon esculentum). Chemosphere 78, 1167–1171 (2010).

    CAS  Article  Google Scholar 

  84. 84.

    Alhashimi, H. A. & Aktas, C. B. Life cycle environmental and economic performance of biochar compared with activated carbon: a meta-analysis. Resour. Conserv. Recycl. 118, 13–26 (2017).

    Article  Google Scholar 

  85. 85.

    Yu, K. L. et al. Microalgae from wastewater treatment to biochar–feedstock preparation and conversion technologies. Energy Convers. Manage. 150, 1–13 (2017).

    CAS  Article  Google Scholar 

  86. 86.

    Lackner, K. S. et al. The urgency of the development of CO2 capture from ambient air. Proc. Natl Acad. Sci. USA 109, 13156–13162 (2012).

    CAS  Article  Google Scholar 

  87. 87.

    Monteith, H. D., Sahely, H. R., MacLean, H. L. & Bagley, D. M. A rational procedure for estimation of greenhouse-gas emissions from municipal wastewater treatment plants. Water Environ. Res. 77, 390–403 (2005).

    CAS  Article  Google Scholar 

  88. 88.

    Smith, A. L. et al. Perspectives on anaerobic membrane bioreactor treatment of domestic wastewater: a critical review. Bioresour. Technol. 122, 149–159 (2012).

    CAS  Article  Google Scholar 

  89. 89.

    Kampschreur, M. et al. Emission of nitrous oxide and nitric oxide from a full-scale single-stage nitritation-anammox reactor. Water Sci. Technol. 60, 3211–3217 (2009).

    CAS  Article  Google Scholar 

  90. 90.

    Miller-Robbie, L., Ramaswami, A. & Amerasinghe, P. Wastewater treatment and reuse in urban agriculture: Exploring the food, energy, water, and health nexus in Hyderabad, India. Environ. Res. Lett. 12, 075005 (2017).

    Article  Google Scholar 

  91. 91.

    Li, Z. et al. Exploring the impacts of regional unbalanced carbon tax on CO2 emissions and industrial competitiveness in Liaoning province of China. Energy Pol. 113, 9–19 (2018).

    Article  Google Scholar 

  92. 92.

    ABO scores historic victory for carbon utilization. Algae Biomass Organization (9 February 2018).

  93. 93.

    Clean Power Plan (USEPA, 2014);

  94. 94.

    Gonçalves, A. L., Pires, J. C. & Simões, M. A review on the use of microalgal consortia for wastewater treatment. Algal Res. 24, 403–415 (2017).

    Article  Google Scholar 

  95. 95.

    Cooper, S. Water and Wastewater Treatment Market Size and Forecast, by Type (Chemicals, Treatment Technologies, Equipment and Services), by End Use (Municipal, Industrial) and Trend Analysis, 2014–2025 (Hexa Research, 2017).

Download references


L.L. and Z.J.R. were supported by the US National Science Foundation under award CEBT-1834724.

Author information




Z.J.R. and L.L. designed the study. L.L, J.S.G. and Z.J.R. performed data analysis. L.L., J.S.G., C.A.P., X.Z., G.H.R. and Z.J.R. wrote the manuscript.

Corresponding author

Correspondence to Zhiyong Jason Ren.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Analysis, Supplementary Tables 1, 2 and Supplementary References 1–9

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lu, L., Guest, J.S., Peters, C.A. et al. Wastewater treatment for carbon capture and utilization. Nat Sustain 1, 750–758 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing