Analysis | Published:

Contribution of jet fuel from forest residues to multiple Sustainable Development Goals

Nature Sustainabilityvolume 1pages799807 (2018) | Download Citation

Abstract

With limited decarbonization options in the aviation sector, renewable jet fuels produced from biomass resources represent a promising opportunity. However, potential implications of their deployment on the Sustainable Development Goals (SDGs) remain largely unexplored. We introduce an approach for SDG analysis based on life-cycle impact assessment methods. We show that climate action benefits of renewable jet fuels produced from forest residues available in Norway are larger in the medium/longer term than the shorter term, but they increase pressure on other SDGs—mainly SDGs 2, 3, 6, 11, 12 and 14—especially for alcohol-to-jet fuel technology. Most of these adverse side-effects are alleviated with technological and supply-chain improvements. Environmental sustainability analysis can identify both synergies (mitigation options that co-deliver across SDGs) and trade-offs between climate change mitigation and the SDGs, thereby supporting their early management and mitigation.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Data availability

The main data that support the findings of this study are available in the Supplementary Information. Other information is available from the corresponding author upon request.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Alexander, P. et al. Assessing uncertainties in land cover projections. Glob. Change Biol. 23, 767–781 (2017).

  2. 2.

    Popp, A. et al. Land-use futures in the shared socio-economic pathways. Glob. Environ. Change 42, 331–345 (2017).

  3. 3.

    Technology Roadmap: Delivering Sustainable Bioenergy (IEA, 2017).

  4. 4.

    Moore, R. H. et al. Biofuel blending reduces particle emissions from aircraft engines at cruise conditions. Nature 543, 411–415 (2017).

  5. 5.

    The Norwegian National Transport Plan 2018–2029: A Targeted and Historic Commitment to the Norwegian Transport Sector (Norwegian Ministry of Transport and Communications, 2017); https://www.regjeringen.no/contentassets/7c52fd2938ca42209e4286fe86bb28bd/en-gb/pdfs/stm201620170033000engpdfs.pdf

  6. 6.

    Stratton, R. W., Wolfe, P. J. & Hileman, J. I. Impact of aviation non-CO2 combustion effects on the environmental feasibility of alternative jet fuels. Environ. Sci. Technol. 45, 10736–10743 (2011).

  7. 7.

    Staples, M. D., Malina, R., Suresh, P., Hileman, J. I. & Barrett, S. R. Aviation CO2 emissions reductions from the use of alternative jet fuels. Energy Policy 114, 342–354 (2018).

  8. 8.

    Han, J., Elgowainy, A., Cai, H. & Wang, M. Q. Life-cycle analysis of bio-based aviation fuels. Bioresour. Technol. 150, 447–456 (2013).

  9. 9.

    De Jong, S. et al. Life-cycle analysis of greenhouse gas emissions from renewable jet fuel production. Biotechnol. Biofuels 10, 64 (2017).

  10. 10.

    Staples, M. D. et al. Lifecycle greenhouse gas footprint and minimum selling price of renewable diesel and jet fuel from fermentation and advanced fermentation production technologies. Energy Environ. Sci. 7, 1545–1554 (2014).

  11. 11.

    Klein, B. C. et al. Techno-economic and environmental assessment of renewable jet fuel production in integrated Brazilian sugarcane biorefineries. Appl. Energy 209, 290–305 (2018).

  12. 12.

    Connelly, E. B., Colosi, L. M., Clarens, A. F. & Lambert, J. H. Life cycle assessment of biofuels from algae hydrothermal liquefaction: the upstream and downstream factors affecting regulatory compliance. Energy Fuels 29, 1653–1661 (2015).

  13. 13.

    Levasseur, A. et al. Enhancing life cycle impact assessment from climate science: review of recent findings and recommendations for application to LCA. Ecol. Indic. 71, 163–174 (2016).

  14. 14.

    Fuglestvedt, J. S. et al. Transport impacts on atmosphere and climate: metrics. Atmos. Environ. 44, 4648–4677 (2010).

  15. 15.

    Stevenson, D. S. & Derwent, R. G. Does the location of aircraft nitrogen oxide emissions affect their climate impact?. Geophys. Res. Lett. 36, L17810 (2009).

  16. 16.

    Lund, M. T. et al. Emission metrics for quantifying regional climate impacts of aviation. Earth Syst. Dynam. 8, 547–563 (2017).

  17. 17.

    Lee, D. et al. Transport impacts on atmosphere and climate: aviation. Atmos. Environ. 44, 4678–4734 (2010).

  18. 18.

    Köhler, M. O., Rädel, G., Shine, K., Rogers, H. & Pyle, J. A. Latitudinal variation of the effect of aviation NOx emissions on atmospheric ozone and methane and related climate metrics. Atmos. Environ. 64, 1–9 (2013).

  19. 19.

    Work of the Statistical Commission Pertaining to the 2030 Agenda for Sustainable Development: Resolution Adopted by the General Assembly on 6 July 2017 (United Nations, 2017).

  20. 20.

    Liu, J. et al. Systems integration for global sustainability. Science 347, 1258832 (2015).

  21. 21.

    Pradhan, P., Costa, L., Rybski, D., Lucht, W. & Kropp, J. P. A systematic study of Sustainable Development Goal (SDG) interactions. Earth’s Future 5, 1169–1179 (2017).

  22. 22.

    Nerini, F. F. et al. Mapping synergies and trade-offs between energy and the Sustainable Development Goals. Nat. Energy 3, 10–15 (2018).

  23. 23.

    Nilsson, M., Griggs, D. & Visbeck, M. Map the interactions between Sustainable Development Goals. Nature 534, 320–322 (2016).

  24. 24.

    Bonsch, M. et al. Trade‐offs between land and water requirements for large‐scale bioenergy production. GCB Bioenergy 8, 11–24 (2016).

  25. 25.

    Humpenöder, F. et al. Large-scale bioenergy production: how to resolve sustainability trade-offs? Environ. Res. Lett. 13, 024011 (2018).

  26. 26.

    Von Stechow, C. et al. 2 °C and SDGs: united they stand, divided they fall?. Environ. Res. Lett. 11, 034022 (2016).

  27. 27.

    Lu, Y., Nakicenovic, N., Visbeck, M. & Stevance, A.-S. Five priorities for the UN Sustainable Development Goals. Nature 520, 432–433 (2015).

  28. 28.

    Chandrakumar, C. & McLaren, S. J. Towards a comprehensive absolute sustainability assessment method for effective Earth system governance: defining key environmental indicators using an enhanced-DPSIR framework. Ecol. Indic. 90, 577–583 (2018).

  29. 29.

    Wulf, C. et al. Sustainable Development Goals as a guideline for indicator selection in life cycle sustainability assessment. Procedia CIRP 69, 59–65 (2018).

  30. 30.

    Dong, Y. & Hauschild, M. Z. Indicators for environmental sustainability. Procedia CIRP 61, 697–702 (2017).

  31. 31.

    Maier, S. D. et al. Methodological approach for the sustainability assessment of development cooperation projects for built innovations based on the SDGs and life cycle thinking. Sustainability 8, 1006 (2016).

  32. 32.

    Hellweg, S. & i Canals, L. M. Emerging approaches, challenges and opportunities in life cycle assessment. Science 344, 1109–1113 (2014).

  33. 33.

    De Jong, J., Akselsson, C., Egnell, G., Löfgren, S. & Olsson, B. A. Realizing the energy potential of forest biomass in Sweden—how much is environmentally sustainable? Forest Ecol. Manage. 383, 3–16 (2017).

  34. 34.

    Lundmark, T. et al. Potential roles of Swedish forestry in the context of climate change mitigation. Forests 5, 557–578 (2014).

  35. 35.

    Mawhood, R., Gazis, E., de Jong, S., Hoefnagels, R. & Slade, R. Production pathways for renewable jet fuel: a review of commercialization status and future prospects. Biofuels Bioprod. Biorefin. 10, 462–484 (2016).

  36. 36.

    Sales of Petroleum Products Statistics Norway (2017); https://www.ssb.no/en/statbank/table/11185

  37. 37.

    Repo, A., Tuomi, M. & Liski, J. Indirect carbon dioxide emissions from producing bioenergy from forest harvest residues. GCB Bioenergy 3, 107–115 (2011).

  38. 38.

    Guest, G., Cherubini, F. & Strømman, A. H. The role of forest residues in the accounting for the global warming potential of bioenergy. GCB Bioenergy 5, 459–466 (2013).

  39. 39.

    Cherubini, F. et al. Global spatially explicit CO2 emission metrics for forest bioenergy. Sci. Rep. 6, 20186 (2016).

  40. 40.

    Collier, Z. A., Connelly, E. B., Polmateer, T. L. & Lambert, J. H. Value chain for next-generation biofuels: resilience and sustainability of the product life cycle. Environ. Syst. Decis. 37, 22–33 (2017).

  41. 41.

    Connelly, E. B., Colosi, L. M., Clarens, A. F. & Lambert, J. H. Risk analysis of biofuels industry for aviation with scenario‐based expert elicitation. Syst. Eng. 18, 178–191 (2015).

  42. 42.

    Commercial Roundwood Removals Statistics Norway (2017); https://www.ssb.no/en/statbank/table/03795

  43. 43.

    Bright, R. M. & Strømman, A. H. Life cycle assessment of second generation bioethanols produced from Scandinavian boreal forest resources. J. Ind. Ecol. 13, 514–531 (2009).

  44. 44.

    Guest, G. & Strømman, A. H. Climate change impacts due to biogenic carbon: addressing the issue of attribution using two metrics with very different outcomes. J. Sustain. Forest. 33, 298–326 (2014).

  45. 45.

    Arvesen, A. et al. Cooling aerosols and changes in albedo counteract warming from CO2 and black carbon from forest bioenergy in Norway. Sci. Rep. 8, 3299 (2018).

  46. 46.

    Oreggioni, G. D. et al. Environmental assessment of biomass gasification combined heat and power plants with absorptive and adsorptive carbon capture units in Norway. Int. J. Greenh. Gas Con. 57, 162–172 (2017).

  47. 47.

    Wernet, G. et al. The ecoinvent database version 3 (part I): overview and methodology. Int. J. Life Cycle Assess. 21, 1218–1230 (2016).

  48. 48.

    Tuomi, M., Rasinmäki, J., Repo, A., Vanhala, P. & Liski, J. Soil carbon model Yasso07 graphical user interface. Environ. Model. Softw. 26, 1358–1362 (2011).

  49. 49.

    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).

  50. 50.

    Cherubini, F. et al. Bridging the gap between impact assessment methods and climate science. Environ. Sci. Policy 64, 129–140 (2016).

  51. 51.

    Humbird, D. et al. Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol: Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover (National Renewable Energy Laboratory, 2011).

  52. 52.

    Narula, C. K., Davison, B. H. & Keller, M. Zeolitic catalytic conversion of alochols to hydrocarbons. US Patent 9,533,921 (2017).

  53. 53.

    Molino, A., Chianese, S. & Musmarra, D. Biomass gasification technology: the state of the art overview. J. Energy Chem. 25, 10–25 (2016).

  54. 54.

    Simell, P. et al. Clean syngas from biomass—process development and concept assessment. Biomass Convers. Biorefin. 4, 357–370 (2014).

  55. 55.

    Hannula, I. & Kurkela, E. Liquid Transportation Fuels via Large-Scale Fluidised-Bed Gasification of Lignocellulosic Biomass (VTT, 2013).

  56. 56.

    Jungbluth, N. et al. Life Cycle Inventories of Bioenergy: Data v2.0 Report 17 (ecoinvent, 2007).

  57. 57.

    Dones, R. et al. Sachbilanzen von Energiesystemen: Grundlagen für den Ökologischen Vergleich von Energiesystemen und den Einbezug von Energiesystemen in Ökobilanzen für die Schweiz Final Report 6 (ecoinvent, 2000).

  58. 58.

    Spielmann, M., Bauer, C., Dones, R. & Tuchschmid, M. Transport Services Report 14 (ecoinvent, 2007).

  59. 59.

    Bond, T. C. et al. A technology‐based global inventory of black and organic carbon emissions from combustion. J. Geophys. Res. Atmos. 109, D14203 (2004).

  60. 60.

    Caiazzo, F., Agarwal, A., Speth, R. L. & Barrett, S. R. Impact of biofuels on contrail warming. Environ. Res. Lett. 12, 114013 (2017).

  61. 61.

    Levasseur, A. et al. in Global Guidance for Life Cycle Assessment Indicators (eds Frischknecht, R. & Jolliet, O.) 58–75 (2017).

  62. 62.

    Myhre, G. et al. in Climate Change 2013: The Physical Science Basis (eds. Stocker, T. F. et al.) 659–740 (Cambridge Univ. Press, 2013).

  63. 63.

    Shine, K. P., Fuglestvedt, J. S., Hailemariam, K. & Stuber, N. Alternatives to the global warming potential for comparing climate impacts of emissions of greenhouse gases. Clim. Change 68, 281–302 (2005).

  64. 64.

    Shine, K. P. The global warming potential—the need for an interdisciplinary retrial. Clim. Change 96, 467–472 (2009).

  65. 65.

    Allen, M. R. et al. New use of global warming potentials to compare cumulative and short-lived climate pollutants. Nat. Clim. Change 6, 773–776 (2016).

  66. 66.

    Søvde, O. A. et al. The chemical transport model Oslo CTM3. Geosci. Model Dev. 5, 1441–1469 (2012).

  67. 67.

    Bock, L. & Burkhardt, U. Reassessing properties and radiative forcing of contrail cirrus using a climate model. J. Geophys. Res. Atmos. 121, 9717–9736 (2016).

  68. 68.

    Bock, L. & Burkhardt, U. The temporal evolution of a long‐lived contrail cirrus cluster: simulations with a global climate model. J. Geophys. Res. Atmos. 121, 3548–3565 (2016).

  69. 69.

    Carslaw, K. et al. Large contribution of natural aerosols to uncertainty in indirect forcing. Nature 503, 67–71 (2013).

Download references

Acknowledgements

This work was supported by The Research Council of Norway through the Bio4Fuels FME Centre (257622). We thank A. McLean for valuable comments on presentation of the results.

Author information

Affiliations

  1. Industrial Ecology Programme, Department of Energy and Process Engineering, Norwegian University of Science and Technology, Trondheim, Norway

    • Otavio Cavalett
    •  & Francesco Cherubini

Authors

  1. Search for Otavio Cavalett in:

  2. Search for Francesco Cherubini in:

Contributions

O.C. and F.C. designed the study. O.C. modelled the aviation fuel pathways. F.C. selected the climate metrics and O.C. calculated the climate impacts. O.C. and F.C. performed the SDG analysis. O.C. performed Monte Carlo runs. O.C. generated all the figures and tables, with inputs from F.C. F.C. and O.C. analysed the results and wrote the paper.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Otavio Cavalett.

Supplementary information

  1. Supplementary Information

    Supplementary Figures 1–4, Supplementary Tables 1–13, Supplementary References 1–35

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41893-018-0181-2