Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

Contribution of jet fuel from forest residues to multiple Sustainable Development Goals

Abstract

With limited decarbonization options in the aviation sector, renewable jet fuels produced from biomass resources represent a promising opportunity. However, potential implications of their deployment on the Sustainable Development Goals (SDGs) remain largely unexplored. We introduce an approach for SDG analysis based on life-cycle impact assessment methods. We show that climate action benefits of renewable jet fuels produced from forest residues available in Norway are larger in the medium/longer term than the shorter term, but they increase pressure on other SDGs—mainly SDGs 2, 3, 6, 11, 12 and 14—especially for alcohol-to-jet fuel technology. Most of these adverse side-effects are alleviated with technological and supply-chain improvements. Environmental sustainability analysis can identify both synergies (mitigation options that co-deliver across SDGs) and trade-offs between climate change mitigation and the SDGs, thereby supporting their early management and mitigation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Climate impacts of jet fuel pathways under multiple global and regional metrics.
Fig. 2: Projected contributions of RJF pathways to the Norwegian aviation sector, and associated climate change mitigation benefits.
Fig. 3: Environmental sustainability of RJF and FJF pathways in relation to nine environmentally orientated SDGs using three representative environmental impact indicators.
Fig. 4: Contribution of technology advances and improvements in the supply chain in the RJF pathways across the SDGs.

Similar content being viewed by others

Data availability

The main data that support the findings of this study are available in the Supplementary Information. Other information is available from the corresponding author upon request.

References

  1. Alexander, P. et al. Assessing uncertainties in land cover projections. Glob. Change Biol. 23, 767–781 (2017).

    Article  Google Scholar 

  2. Popp, A. et al. Land-use futures in the shared socio-economic pathways. Glob. Environ. Change 42, 331–345 (2017).

    Article  Google Scholar 

  3. Technology Roadmap: Delivering Sustainable Bioenergy (IEA, 2017).

  4. Moore, R. H. et al. Biofuel blending reduces particle emissions from aircraft engines at cruise conditions. Nature 543, 411–415 (2017).

    Article  CAS  Google Scholar 

  5. The Norwegian National Transport Plan 2018–2029: A Targeted and Historic Commitment to the Norwegian Transport Sector (Norwegian Ministry of Transport and Communications, 2017); https://www.regjeringen.no/contentassets/7c52fd2938ca42209e4286fe86bb28bd/en-gb/pdfs/stm201620170033000engpdfs.pdf

  6. Stratton, R. W., Wolfe, P. J. & Hileman, J. I. Impact of aviation non-CO2 combustion effects on the environmental feasibility of alternative jet fuels. Environ. Sci. Technol. 45, 10736–10743 (2011).

    Article  CAS  Google Scholar 

  7. Staples, M. D., Malina, R., Suresh, P., Hileman, J. I. & Barrett, S. R. Aviation CO2 emissions reductions from the use of alternative jet fuels. Energy Policy 114, 342–354 (2018).

    Article  CAS  Google Scholar 

  8. Han, J., Elgowainy, A., Cai, H. & Wang, M. Q. Life-cycle analysis of bio-based aviation fuels. Bioresour. Technol. 150, 447–456 (2013).

    Article  CAS  Google Scholar 

  9. De Jong, S. et al. Life-cycle analysis of greenhouse gas emissions from renewable jet fuel production. Biotechnol. Biofuels 10, 64 (2017).

    Article  Google Scholar 

  10. Staples, M. D. et al. Lifecycle greenhouse gas footprint and minimum selling price of renewable diesel and jet fuel from fermentation and advanced fermentation production technologies. Energy Environ. Sci. 7, 1545–1554 (2014).

    Article  CAS  Google Scholar 

  11. Klein, B. C. et al. Techno-economic and environmental assessment of renewable jet fuel production in integrated Brazilian sugarcane biorefineries. Appl. Energy 209, 290–305 (2018).

    Article  CAS  Google Scholar 

  12. Connelly, E. B., Colosi, L. M., Clarens, A. F. & Lambert, J. H. Life cycle assessment of biofuels from algae hydrothermal liquefaction: the upstream and downstream factors affecting regulatory compliance. Energy Fuels 29, 1653–1661 (2015).

    Article  CAS  Google Scholar 

  13. Levasseur, A. et al. Enhancing life cycle impact assessment from climate science: review of recent findings and recommendations for application to LCA. Ecol. Indic. 71, 163–174 (2016).

    Article  Google Scholar 

  14. Fuglestvedt, J. S. et al. Transport impacts on atmosphere and climate: metrics. Atmos. Environ. 44, 4648–4677 (2010).

    Article  CAS  Google Scholar 

  15. Stevenson, D. S. & Derwent, R. G. Does the location of aircraft nitrogen oxide emissions affect their climate impact?. Geophys. Res. Lett. 36, L17810 (2009).

    Article  Google Scholar 

  16. Lund, M. T. et al. Emission metrics for quantifying regional climate impacts of aviation. Earth Syst. Dynam. 8, 547–563 (2017).

    Article  Google Scholar 

  17. Lee, D. et al. Transport impacts on atmosphere and climate: aviation. Atmos. Environ. 44, 4678–4734 (2010).

    Article  CAS  Google Scholar 

  18. Köhler, M. O., Rädel, G., Shine, K., Rogers, H. & Pyle, J. A. Latitudinal variation of the effect of aviation NOx emissions on atmospheric ozone and methane and related climate metrics. Atmos. Environ. 64, 1–9 (2013).

    Article  Google Scholar 

  19. Work of the Statistical Commission Pertaining to the 2030 Agenda for Sustainable Development: Resolution Adopted by the General Assembly on 6 July 2017 (United Nations, 2017).

  20. Liu, J. et al. Systems integration for global sustainability. Science 347, 1258832 (2015).

    Article  Google Scholar 

  21. Pradhan, P., Costa, L., Rybski, D., Lucht, W. & Kropp, J. P. A systematic study of Sustainable Development Goal (SDG) interactions. Earth’s Future 5, 1169–1179 (2017).

    Article  Google Scholar 

  22. Nerini, F. F. et al. Mapping synergies and trade-offs between energy and the Sustainable Development Goals. Nat. Energy 3, 10–15 (2018).

    Article  Google Scholar 

  23. Nilsson, M., Griggs, D. & Visbeck, M. Map the interactions between Sustainable Development Goals. Nature 534, 320–322 (2016).

    Article  Google Scholar 

  24. Bonsch, M. et al. Trade‐offs between land and water requirements for large‐scale bioenergy production. GCB Bioenergy 8, 11–24 (2016).

    Article  Google Scholar 

  25. Humpenöder, F. et al. Large-scale bioenergy production: how to resolve sustainability trade-offs? Environ. Res. Lett. 13, 024011 (2018).

    Article  Google Scholar 

  26. Von Stechow, C. et al. 2 °C and SDGs: united they stand, divided they fall?. Environ. Res. Lett. 11, 034022 (2016).

    Article  Google Scholar 

  27. Lu, Y., Nakicenovic, N., Visbeck, M. & Stevance, A.-S. Five priorities for the UN Sustainable Development Goals. Nature 520, 432–433 (2015).

    Article  Google Scholar 

  28. Chandrakumar, C. & McLaren, S. J. Towards a comprehensive absolute sustainability assessment method for effective Earth system governance: defining key environmental indicators using an enhanced-DPSIR framework. Ecol. Indic. 90, 577–583 (2018).

    Article  Google Scholar 

  29. Wulf, C. et al. Sustainable Development Goals as a guideline for indicator selection in life cycle sustainability assessment. Procedia CIRP 69, 59–65 (2018).

    Article  Google Scholar 

  30. Dong, Y. & Hauschild, M. Z. Indicators for environmental sustainability. Procedia CIRP 61, 697–702 (2017).

  31. Maier, S. D. et al. Methodological approach for the sustainability assessment of development cooperation projects for built innovations based on the SDGs and life cycle thinking. Sustainability 8, 1006 (2016).

    Article  Google Scholar 

  32. Hellweg, S. & i Canals, L. M. Emerging approaches, challenges and opportunities in life cycle assessment. Science 344, 1109–1113 (2014).

    Article  CAS  Google Scholar 

  33. De Jong, J., Akselsson, C., Egnell, G., Löfgren, S. & Olsson, B. A. Realizing the energy potential of forest biomass in Sweden—how much is environmentally sustainable? Forest Ecol. Manage. 383, 3–16 (2017).

    Article  Google Scholar 

  34. Lundmark, T. et al. Potential roles of Swedish forestry in the context of climate change mitigation. Forests 5, 557–578 (2014).

    Article  Google Scholar 

  35. Mawhood, R., Gazis, E., de Jong, S., Hoefnagels, R. & Slade, R. Production pathways for renewable jet fuel: a review of commercialization status and future prospects. Biofuels Bioprod. Biorefin. 10, 462–484 (2016).

    Article  CAS  Google Scholar 

  36. Sales of Petroleum Products Statistics Norway (2017); https://www.ssb.no/en/statbank/table/11185

  37. Repo, A., Tuomi, M. & Liski, J. Indirect carbon dioxide emissions from producing bioenergy from forest harvest residues. GCB Bioenergy 3, 107–115 (2011).

    Article  CAS  Google Scholar 

  38. Guest, G., Cherubini, F. & Strømman, A. H. The role of forest residues in the accounting for the global warming potential of bioenergy. GCB Bioenergy 5, 459–466 (2013).

    Article  Google Scholar 

  39. Cherubini, F. et al. Global spatially explicit CO2 emission metrics for forest bioenergy. Sci. Rep. 6, 20186 (2016).

    Article  CAS  Google Scholar 

  40. Collier, Z. A., Connelly, E. B., Polmateer, T. L. & Lambert, J. H. Value chain for next-generation biofuels: resilience and sustainability of the product life cycle. Environ. Syst. Decis. 37, 22–33 (2017).

    Article  Google Scholar 

  41. Connelly, E. B., Colosi, L. M., Clarens, A. F. & Lambert, J. H. Risk analysis of biofuels industry for aviation with scenario‐based expert elicitation. Syst. Eng. 18, 178–191 (2015).

    Article  Google Scholar 

  42. Commercial Roundwood Removals Statistics Norway (2017); https://www.ssb.no/en/statbank/table/03795

  43. Bright, R. M. & Strømman, A. H. Life cycle assessment of second generation bioethanols produced from Scandinavian boreal forest resources. J. Ind. Ecol. 13, 514–531 (2009).

    Article  CAS  Google Scholar 

  44. Guest, G. & Strømman, A. H. Climate change impacts due to biogenic carbon: addressing the issue of attribution using two metrics with very different outcomes. J. Sustain. Forest. 33, 298–326 (2014).

    Article  Google Scholar 

  45. Arvesen, A. et al. Cooling aerosols and changes in albedo counteract warming from CO2 and black carbon from forest bioenergy in Norway. Sci. Rep. 8, 3299 (2018).

    Article  Google Scholar 

  46. Oreggioni, G. D. et al. Environmental assessment of biomass gasification combined heat and power plants with absorptive and adsorptive carbon capture units in Norway. Int. J. Greenh. Gas Con. 57, 162–172 (2017).

    Article  CAS  Google Scholar 

  47. Wernet, G. et al. The ecoinvent database version 3 (part I): overview and methodology. Int. J. Life Cycle Assess. 21, 1218–1230 (2016).

    Article  Google Scholar 

  48. Tuomi, M., Rasinmäki, J., Repo, A., Vanhala, P. & Liski, J. Soil carbon model Yasso07 graphical user interface. Environ. Model. Softw. 26, 1358–1362 (2011).

    Article  Google Scholar 

  49. Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).

    Article  Google Scholar 

  50. Cherubini, F. et al. Bridging the gap between impact assessment methods and climate science. Environ. Sci. Policy 64, 129–140 (2016).

    Article  Google Scholar 

  51. Humbird, D. et al. Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol: Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover (National Renewable Energy Laboratory, 2011).

  52. Narula, C. K., Davison, B. H. & Keller, M. Zeolitic catalytic conversion of alochols to hydrocarbons. US Patent 9,533,921 (2017).

  53. Molino, A., Chianese, S. & Musmarra, D. Biomass gasification technology: the state of the art overview. J. Energy Chem. 25, 10–25 (2016).

    Article  Google Scholar 

  54. Simell, P. et al. Clean syngas from biomass—process development and concept assessment. Biomass Convers. Biorefin. 4, 357–370 (2014).

    Article  CAS  Google Scholar 

  55. Hannula, I. & Kurkela, E. Liquid Transportation Fuels via Large-Scale Fluidised-Bed Gasification of Lignocellulosic Biomass (VTT, 2013).

  56. Jungbluth, N. et al. Life Cycle Inventories of Bioenergy: Data v2.0 Report 17 (ecoinvent, 2007).

  57. Dones, R. et al. Sachbilanzen von Energiesystemen: Grundlagen für den Ökologischen Vergleich von Energiesystemen und den Einbezug von Energiesystemen in Ökobilanzen für die Schweiz Final Report 6 (ecoinvent, 2000).

  58. Spielmann, M., Bauer, C., Dones, R. & Tuchschmid, M. Transport Services Report 14 (ecoinvent, 2007).

  59. Bond, T. C. et al. A technology‐based global inventory of black and organic carbon emissions from combustion. J. Geophys. Res. Atmos. 109, D14203 (2004).

    Article  Google Scholar 

  60. Caiazzo, F., Agarwal, A., Speth, R. L. & Barrett, S. R. Impact of biofuels on contrail warming. Environ. Res. Lett. 12, 114013 (2017).

    Article  Google Scholar 

  61. Levasseur, A. et al. in Global Guidance for Life Cycle Assessment Indicators (eds Frischknecht, R. & Jolliet, O.) 58–75 (2017).

  62. Myhre, G. et al. in Climate Change 2013: The Physical Science Basis (eds. Stocker, T. F. et al.) 659–740 (Cambridge Univ. Press, 2013).

  63. Shine, K. P., Fuglestvedt, J. S., Hailemariam, K. & Stuber, N. Alternatives to the global warming potential for comparing climate impacts of emissions of greenhouse gases. Clim. Change 68, 281–302 (2005).

    Article  CAS  Google Scholar 

  64. Shine, K. P. The global warming potential—the need for an interdisciplinary retrial. Clim. Change 96, 467–472 (2009).

    Article  Google Scholar 

  65. Allen, M. R. et al. New use of global warming potentials to compare cumulative and short-lived climate pollutants. Nat. Clim. Change 6, 773–776 (2016).

    Article  CAS  Google Scholar 

  66. Søvde, O. A. et al. The chemical transport model Oslo CTM3. Geosci. Model Dev. 5, 1441–1469 (2012).

    Article  Google Scholar 

  67. Bock, L. & Burkhardt, U. Reassessing properties and radiative forcing of contrail cirrus using a climate model. J. Geophys. Res. Atmos. 121, 9717–9736 (2016).

    Article  Google Scholar 

  68. Bock, L. & Burkhardt, U. The temporal evolution of a long‐lived contrail cirrus cluster: simulations with a global climate model. J. Geophys. Res. Atmos. 121, 3548–3565 (2016).

    Article  CAS  Google Scholar 

  69. Carslaw, K. et al. Large contribution of natural aerosols to uncertainty in indirect forcing. Nature 503, 67–71 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by The Research Council of Norway through the Bio4Fuels FME Centre (257622). We thank A. McLean for valuable comments on presentation of the results.

Author information

Authors and Affiliations

Authors

Contributions

O.C. and F.C. designed the study. O.C. modelled the aviation fuel pathways. F.C. selected the climate metrics and O.C. calculated the climate impacts. O.C. and F.C. performed the SDG analysis. O.C. performed Monte Carlo runs. O.C. generated all the figures and tables, with inputs from F.C. F.C. and O.C. analysed the results and wrote the paper.

Corresponding author

Correspondence to Otavio Cavalett.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–4, Supplementary Tables 1–13, Supplementary References 1–35

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cavalett, O., Cherubini, F. Contribution of jet fuel from forest residues to multiple Sustainable Development Goals. Nat Sustain 1, 799–807 (2018). https://doi.org/10.1038/s41893-018-0181-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41893-018-0181-2

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene