Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spatially explicit valuation of the Brazilian Amazon Forest’s Ecosystem Services

Abstract

The Brazilian Amazon forest is tremendously important for its ecosystem services but attribution of economically measurable values remains scarce. Mapping these values is essential for designing conservation strategies that suitably combine regional forest protection with sustainable forest use. We estimate spatially explicit economic values for a range of ecosystem services provided by the Brazilian Amazon forest, including food production (Brazil nut), raw material provision (rubber and timber), greenhouse gas mitigation (CO2 emissions) and climate regulation (rent losses to soybean, beef and hydroelectricity production due to reduced rainfall). Our work also includes the mapping of biodiversity resources and of rent losses to timber production by fire-induced degradation. Highest values range from US$56.72 ± 10 ha−1 yr−1 to US$737 ± 134 ha−1 yr−1 but are restricted to only 12% of the remaining forest. Our results, presented on a web platform, identify regions where high ecosystem services values cluster together as potential information to support decision-making.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Forest values for individual value components
Fig. 2: Forest values overlaid with highly biodiverse areas.
Fig. 3: Areal extent of intervals of forest values in US$ ha−1 yr−1 for each valuation component and for the total value map (see Figs. 1 and 2).

Similar content being viewed by others

Data availability

The data that support the findings of this study are available at http://amazones.info. Further description of how the data were processed and analysed is presented in the SI.

References

  1. Baccini, A. et al. Tropical forests are a net carbon source based on aboveground measurements of gain and loss. Science https://doi.org/10.1126/science.aam5962 (2017).

    Article  CAS  Google Scholar 

  2. Costanza, R. et al. Changes in the global value of ecosystem services. Glob. Environ. Change 26, 152–158 (2014).

    Article  Google Scholar 

  3. Oliveira, U. et al. Biodiversity conservation gaps in the Brazilian protected areas. Sci. Rep. 7, 9141 (2017).

    Article  Google Scholar 

  4. Phillips, O. L. & Brienen, R. J. W. Carbon uptake by mature Amazon forests has mitigated Amazon nations’ carbon emissions. Carbon Balance Manag. 12, 1 (2017).

    Article  Google Scholar 

  5. Fearnside, P. M. Environmental services as a strategy for sustainable development in rural Amazonia. Ecol. Econ. 20, 53–70 (1997).

    Article  Google Scholar 

  6. Oliveira, L. J., Costa, M. H., Soares-Filho, B. & Coe, M. Large-scale expansion of agriculture in Amazonia may be a no-win scenario. Environ. Res. Lett. 8, 1–10 (2013).

    Article  Google Scholar 

  7. Soares-Filho, B. et al. Role of Brazilian Amazon protected areas in climate change mitigation. Proc. Natl Acad. Sci. USA 107, 10821–10826 (2010).

    Article  CAS  Google Scholar 

  8. Costanza, R. et al. The value of the world’s ecosystem services and natural capital. Nature 387, 253–260 (1997).

    Article  CAS  Google Scholar 

  9. Costanza, R. et al. Twenty years of ecosystem services: how far have we come and how far do we still need to go?. Ecosyst. Serv. 28, 1–16 (2017).

    Article  Google Scholar 

  10. Groot, R. et al. Global estimates of the value of ecosystems and their services in monetary units. Ecosyst. Serv. 1, 50–61 (2012).

    Article  Google Scholar 

  11. Pearce, D, Markandya, A. & Barbier, E. Blueprint for a Green Economy (Earthscan, London, 1989).

  12. Bateman, I. J. et al. Bringing ecosystem services into economic decision-making: land use in the United Kingdom. Science 341, 45–50 (2013).

    Article  CAS  Google Scholar 

  13. Andersen, L. E, Granger, C. W, Reis, E. J, Weinhold, D. & Wunder, S. The Dynamics of Deforestation and Economic Growth in the Brazilian Amazon 282 (Cambridge Univ. Press, Cambridge, 2002).

  14. Strand, J. Modeling the marginal value of rainforest losses: a dynamic value function approach. Ecol. Econ. 131, 322–329 (2017).

    Article  Google Scholar 

  15. Torras, M. The total economic value of Amazonian deforestation, 1978–1993. Ecol. Econ. 33, 283–297 (2000).

    Article  Google Scholar 

  16. Laurila-Pant, M., Lehikoinen, A., Uusitalo, L. & Venesjärvi, R. How to value biodiversity in environmental management?. Ecol. Indic. 55, 1–11 (2015).

    Article  Google Scholar 

  17. Small, N., Munday, M. & Durance, I. The challenge of valuing ecosystem services that have no material benefits. Glob. Environ. Chang. 44, 57–67 (2017).

    Article  Google Scholar 

  18. Rangel, T. F. et al. Modeling the ecology and evolution of biodiversity: biogeographical cradles, museums, and graves. Science 361, eaar5452 (2018).

    Article  Google Scholar 

  19. Soares-Filho, B. S. et al. Economic Valuation of Changes in the Amazon Forest Area: Economic Losses by Fires to Sustainable Timber Production (Center for Remote Sensing, Belo Horizonte, 2017).

  20. Resolution n. 406 of February 2, 2009 (CONAMA, Brazil, 2009).

  21. Oliveira, A. S. et al. Economic losses to sustainable timber production by fire in the Brazilian Amazon. Geogr. J. https://doi.org/10.1111/geoj.12276 (2018).

  22. Lovejoy, T. E. & Nobre, C. Amazon tipping point. Sci. Adv. 4, https://doi.org/10.1126/sciadv.aat2340 (2018).

    Article  Google Scholar 

  23. Brando, P. M. et al. Abrupt increases in Amazonian tree mortality due to drought–fire interactions. Proc. Natl Acad. Sci. USA 111, 6347–6352 (2014).

    Article  CAS  Google Scholar 

  24. Silvestrini, R. A. et al. Simulating fire regimes in the Amazon in response to climate change and deforestation. Ecol. Appl. 21, 1573–1590 (2011).

    Article  Google Scholar 

  25. Mendonça, M. J. C. et al. The economic cost of the use of fire in the Amazon. Ecol. Econ. 49, 89–105 (2004).

    Article  Google Scholar 

  26. Nunes, F. et al. Economic benefits of forest conservation: assessing the potential rents from Brazil nut concessions in Madre de Dios, Peru, to channel REDD+ investments. Environ. Conserv. 39, 132–143 (2012).

    Article  Google Scholar 

  27. Jaramillo-Giraldo, C., Soares Filho, B., Carvalho Ribeiro, S. M. & Gonçalves, R. C. Is it possible to make rubber extraction ecologically and economically viable in the Amazon? The southern Acre and Chico Mendes Reserve case study. Ecol. Econ. 134, 186–197 (2017).

    Article  Google Scholar 

  28. Ribeiro, S. et al. Can multifunctional livelihoods including recreational ecosystem services (RES) and non timber forest products (NTFP) maintain biodiverse forests in the Brazilian Amazon?. Ecosyst. Serv. 31, 517–526 (2018).

    Article  Google Scholar 

  29. Fearnside, P. M In Oxford Research Encyclopedia of Environmental Science (ed. H. Shugart) (Oxford Univ. Press, Oxford, 2017).

  30. Stickler, C. M. et al. Dependence of hydropower energy generation on forests in the Amazon Basin at local and regional scales. Proc. Natl Acad. Sci. 110, 9601–9606 (2013).

    Article  CAS  Google Scholar 

  31. Sumila, T. C. A., Pires, G. F., Fontes, V. C. & Costa, M. H. Sources of water vapor to economically relevant regions in Amazonia and the effect of deforestation. J. Hydrometeorol. 18, 1643–1655 (2017).

    Article  Google Scholar 

  32. Rochedo, P. R. R. et al. The threat of political bargaining to climate mitigation in Brazil. Nat. Clim. Change 8, 695–698 (2018).

    Article  CAS  Google Scholar 

  33. Van der Hoff, R., Rajão, R. & Leroy, P. Clashing interpretations of REDD+ “results” in the Amazon Fund. Clim. Change 150, 433–445 (2018).

    Article  Google Scholar 

  34. Soares-Filho, B. et al. Modelling conservation in the Amazon basin. Nature 440, 520–523 (2006).

    Article  CAS  Google Scholar 

  35. Soares-Filho, B. et al. Cracking Brazil’s forest code. Science 344, 363–364 (2014).

    Article  CAS  Google Scholar 

  36. Steege, H. et al. The discovery of the Amazonian tree flora with an updated checklist of all known tree taxa. Sci. Rep. 6, 1–15 (2016).

    Article  Google Scholar 

  37. Oliveira, U. et al. The strong influence of collection bias on biodiversity knowledge shortfalls of Brazilian terrestrial biodiversity. Divers. Distrib. 22, 1232–1244 (2016).

    Article  Google Scholar 

  38. Summary for Policymakers of the Assessment Report of the Intergovernmental Science-policy Platform on Biodiversity and Ecosystem Services on Pollinators, Pollination and Food Production (IPBES, Bonn, 2016).

  39. Oliveira, U. et al. Economic Valuation of Changes in the Amazon Forest Area: Priority Areas for Biodiversity Conservation in the Brazilian Amazon (Center for Remote Sensing, Belo Horizonte, 2017).

  40. Nunes, F. S., Soares Filho, B. & Rodrigues, H. Valorando a floresta em pé: a rentabilidade da castanha do Brasil no Acre. In IX Encontro Nacional da Ecoeco, Brasília (2011).

  41. Dean, W Brazil and the Struggle for Rubber: A Study in Environmental History (Studies in Environment and History) (Cambridge Univ. Press, Cambridge, 2002)

  42. Bowman, M. S. et al. Persistence of cattle ranching in the Brazilian Amazon: a spatial analysis of the rationale for beef production. Land Use Policy 29, 558–568 (2012).

    Article  Google Scholar 

  43. Fearnside, P. M. Conservation policy in Brazilian Amazonia: understanding the dilemmas. World Dev. 31, 757–779 (2003).

    Article  Google Scholar 

  44. Pires, G. F. & Costa, M. H. Deforestation causes different subregional effects on the Amazon bioclimatic equilibrium. Geophys. Res. Lett. 40, 3618–3623 (2013).

    Article  Google Scholar 

  45. Merry, F., Soares-Filho, B. S., Nepstad, D., Amacher, G. & Rodrigues, H. Balancing conservation and economic sustainability: the future of the Amazon timber industry. Environ. Manage. 44, 395–407 (2009).

    Article  Google Scholar 

  46. State Capitals of Brazil (Instituto Brasileiro de Geografia e Estatística, 2010); http://downloads.ibge.gov.br/downloads_geociencias.htm

  47. State Boundaries of Brazil (Instituto Brasileiro de Geografia e Estatística, 2015); http://mapas.ibge.gov.br/bases-e-referenciais/bases-cartograficas/malhas-digitais

  48. Projeto Prodes: Monitoramento da Floresta Amazônica Brasileira por Satélite (Instituto Nacional de Pesquisas Espaciais, 2017); http://www.obt.inpe.br/prodes/index.php

  49. Limits of Biomes in Brazil (Ministério do Meio Ambiente, 2017); http://mapas.mma.gov.br/i3geo/datadownload.htm

  50. Bonham-Carter, G. Geographic Information Systems for Geoscientists: Modelling with GIS (Pergamon, Oxford, 1994).

    Google Scholar 

  51. Houghton, R. A. et al. Annual fluxes of carbon from deforestation and regrowth in the Brazilian Amazon. Nature 403, 301–304 (2000).

    Article  CAS  Google Scholar 

  52. Allen, M. R., Stott, P. A., Mitchell, J. F. B., Schnur, R. & Delworth, T. L. Quantifying the uncertainty inforecasts of anthropocentric climate change. Nature 407, 617–620 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We received financial support from the Norwegian government through the World Bank. Feedback was provided by Y. Kraus and J. Vincent. B.S.F., M.C., G.P., R.J. and U.O. received support from CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico). U.O., A.O. and R.H. received support from CAPES (Coordenação e Aperfeiçoamento de Nível Superior). B.S.F. was also supported by the Humboldt Foundation. P.M. was supported by TEEB (The Economics of Ecosystems and Biodiversity) AgriFood project.

Author information

Authors and Affiliations

Authors

Contributions

J.S., B.S.F. and M.C. designed the project, conducted research and wrote the manuscript. G.P., U.O., S.R., R.R. and A.O. conducted research and helped write the manuscript. J.S. and R.M. conducted research. P.M., M.T. and R.H. helped write the manuscript.

Corresponding authors

Correspondence to Jon Strand or Britaldo Soares-Filho.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–7, Supplementary Figures 1–75, Supplementary Tables 1–19, Supplementary References 1–163

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strand, J., Soares-Filho, B., Costa, M.H. et al. Spatially explicit valuation of the Brazilian Amazon Forest’s Ecosystem Services. Nat Sustain 1, 657–664 (2018). https://doi.org/10.1038/s41893-018-0175-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41893-018-0175-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing