Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Unintended multispecies co-benefits of an Amazonian community-based conservation programme


Urgent challenges posed by widespread degradation in tropical ecosystems with poor governance require new development pathways to reconcile biodiversity conservation and human welfare. Community-based conservation management has shown potential for integrating socio-economic needs with conservation goals in tropical environments; however, assessing the effectiveness of this approach is often held back by the lack of comprehensive ecological assessments. We conduct a robust ecological evaluation of the largest community-based conservation management initiative in the Brazilian Amazon over the last 40 years. We show that this programme has induced large-scale population recovery of the target giant South American turtle (Podocnemis expansa) and other freshwater turtles along a 1,500-km section of a major tributary of the Amazon River. Poaching activity on protected beaches was around 2% compared to 99% on unprotected beaches. We also find positive demographic co-benefits across a wide range of non-target vertebrate and invertebrate taxa. As a result, beaches protected by local communities represent islands of high biodiversity, while unprotected beaches remain ‘empty and silent’, showing the effectiveness of empowering local conservation action, particularly in countries experiencing shortages in financial and human resources.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Map of the study region in the western Brazilian Amazon region.
Fig. 2: Paired nesting and abundance responses for target and non-target taxa.
Fig. 3: Standardized size effect for all predictors of freshwater turtle nests.

Data availability

The data set used in this manuscript and analytical scripts are available in the Supplementary Information. Any additional information is available from the authors on request.


  1. 1.

    Protected Planet Report 2016 (UNEP-WCMC and IUCN, 2016);

  2. 2.

    Strategic Plan for Biodiversity 2011–2020, COP 10, Decision X/2 (Convention on Biological Diversity, 2010);

  3. 3.

    Geldmann, J. et al. A global analysis of management capacity and ecological outcomes in protected areas. Conserv. Lett. 11, e12434 (2018).

    Article  Google Scholar 

  4. 4.

    Gibson, L. et al. Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478, 378–381 (2011).

    CAS  Article  Google Scholar 

  5. 5.

    Sayer, J. et al. In The Politics of Decentralization: Forest, Power and People (eds C. J. Pierce Colfer & D. Capistrano) Ch. 6 (Earthscan, London, 2005).

  6. 6.

    Terborgh, J. & Peres, C. A. Do community-managed forests work? A biodiversity perspective. Land 6, 22 (2017).

    Article  Google Scholar 

  7. 7.

    Berkes, F. Community-based conservation in a globalized world. Proc. Natl Acad. Sci. USA 104, 15188–15193 (2007).

    CAS  Article  Google Scholar 

  8. 8.

    Pailler, S., Naidoo, R., Burgess, N. D., Freeman, O. E. & Fisher, B. Impacts of community-based natural resource management on wealth, food security and child health in Tanzania. PLoS ONE 10, e0133252 (2015).

    Article  Google Scholar 

  9. 9.

    Bruner, A. G., Gullison, R. E. & Balmford, A. Financial costs and shortfalls of managing and expanding protected-area systems in developing countries. BioScience 54, 1119–1126 (2004).

    Article  Google Scholar 

  10. 10.

    de Marques, A. A. B., Schneider, M. & Peres, C. A. Human population and socioeconomic modulators of conservation performance in 788 Amazonian and Atlantic Forest reserves. PeerJ 4, e2206 (2016).

    Article  Google Scholar 

  11. 11.

    Campos-Silva, J. V. & Peres, C. A. Community-based management induces rapid recovery of a high-value tropical freshwater fishery. Sci. Rep. 6, 34745 (2016).

    CAS  Article  Google Scholar 

  12. 12.

    Naidoo, R., Weaver, L. C., De Longcamp, M. & Du Plessis, P. Namibia’s community-based natural resource management programme: an unrecognized payments for ecosystem services scheme. Environ. Conserv. 38, 445–453 (2011).

    Article  Google Scholar 

  13. 13.

    Somanathan, E., Prabhakar, R. & Mehta, B. S. Decentralization for cost-effective conservation. Proc. Natl Acad. Sci. USA 106, 4143–4147 (2009).

    CAS  Article  Google Scholar 

  14. 14.

    Dorresteijn, I. et al. Incorporating anthropogenic effects into trophic ecology: predator–prey interactions in a human-dominated landscape. Proc. Biol. Sci. 282, 20151602 (2015).

    Article  Google Scholar 

  15. 15.

    Castello, L. et al. The vulnerability of Amazon freshwater ecosystems. Conserv Lett 6, 217–229 (2013).

    Article  Google Scholar 

  16. 16.

    Schneider, L., Ferrara, C. R., Vogt, R. C. & Burger, J. History of turtle exploitation and management techniques to conserve turtles in the Rio Negro basin of the Brazilian Amazon. Chelonian Conserv. Biol. 10, 149–157 (2011).

    Article  Google Scholar 

  17. 17.

    Berkes, F. Evolution of co-management: role of knowledge generation, bridging organizations and social learning. J. Environ. Manage. 90, 1692–1702 (2009).

    Article  Google Scholar 

  18. 18.

    Barrett, C. B., Brandon, K., Gibson, C. & Gjertsen, H. Conserving tropical biodiversity amid weak institutions. BioScience 51, 497–502 (2001).

    Article  Google Scholar 

  19. 19.

    Evans, L., Cherrett, N. & Pemsl, D. Assessing the impact of fisheries co-management interventions in developing countries: a meta-analysis. J. Environ. Manage. 92, 1938–1949 (2011).

    Article  Google Scholar 

  20. 20.

    Cantarelli, V. H., Malvasio, A. & Verdade, L. M. Brazil’s Podocnemis expansa conservation program: retrospective and future directions. Chelonian Conserv. Biol. 13, 124–128 (2014).

    Article  Google Scholar 

  21. 21.

    Gibbons, J. W. et al. The global decline of reptiles, déjà vu amphibians. BioScience 50, 653–666 (2000).

    Article  Google Scholar 

  22. 22.

    van Vliet, N. et al. Ride, shoot, and call: wildlife use among contemporary urban hunters in Três Fronteiras, Brazilian Amazon. Ecol. Soc. 20, 8 (2015).

    Article  Google Scholar 

  23. 23.

    Prestes-Carneiro, G., Béarez, P., Bailon, S., Py-Daniel, A. R. & Neves, E. G. Subsistence fishery at Hatahara (750–1230 CE), a pre-Columbian central Amazonian village. J. Archaeol. Sci. Rep. 8, 454–462 (2016).

    Google Scholar 

  24. 24.

    Antunes, A. P. et al. Empty forest or empty rivers? A century of commercial hunting in Amazonia. Sci. Adv. 2, e1600936 (2016).

    Article  Google Scholar 

  25. 25.

    Peres, C. A. Effects of subsistence hunting on vertebrate community structure in Amazonian forests. Conserv. Biol. 14, 240–253 (2000).

    Article  Google Scholar 

  26. 26.

    Caputo, F. P., Canestrelli, D. & Boitani, L. Conserving the terecay (Podocnemis unifilis, Testudines: Pelomedusidae) through a community-based sustainable harvest of its eggs. Biol. Conserv. 126, 84–92 (2005).

    Article  Google Scholar 

  27. 27.

    Conway-Gómez, K. Effects of human settlements on abundance of Podocnemis unifilis and P. expansa turtles in northeastern Bolivia. Chelonian Conserv. Biol. 6, 199–205 (2007).

    Article  Google Scholar 

  28. 28.

    Peñaloza, C. L., Hernández, O., Espín, R., Crowder, L. B. & Barreto, G. R. Harvest of endangered sideneck river turtles (Podocnemis spp.) in the Middle Orinoco, Venezuela. Copeia 2013, 111–120 (2013).

    Article  Google Scholar 

  29. 29.

    McClenachan, L., Jackson, J. B. C. & Newman, M. J. H. Conservation implications of historic sea turtle nesting beach loss. Front. Ecol. Environ. 4, 290–296 (2006).

    Article  Google Scholar 

  30. 30.

    Peres, C. A. & Palacios, E. Basin-wide effects of game harvest on vertebrate population densities in Amazonian forests: implications for animal-mediated seed dispersal. Biotropica 39, 304–315 (2007).

    Article  Google Scholar 

  31. 31.

    Endo, W., Peres, C. A. & Haugaasen, T. Flood pulse dynamics affects exploitation of both aquatic and terrestrial prey by Amazonian floodplain settlements. Biol. Conserv. 201, 129–136 (2016).

    Article  Google Scholar 

  32. 32.

    Hallwass, G., Lopes, P. F., Juras, A. A. & Silvano, R. A. M. Fishing effort and catch composition of urban market and rural villages in Brazilian Amazon. Environ. Manage. 47, 188–200 (2011).

    Article  Google Scholar 

  33. 33.

    Petrere, M., Barthem, R. B., Córdoba, E. A. & Gómez, B. C. Review of the large catfish fisheries in the upper Amazon and the stock depletion of piraíba (Brachyplatystoma filamentosum Lichtenstein). Rev. Fish Biol. Fish. 14, 403–414 (2004).

    Article  Google Scholar 

  34. 34.

    Smith, N. J. H. Caimans, capybaras, otters, manatees, and man in Amazonia. Biol. Conserv. 19, 177–187 (1981).

    Article  Google Scholar 

  35. 35.

    Da Silveira, R. & Thorbjarnarson, J. B. Conservation implications of commercial hunting of black and spectacled caiman in the Mamirauá Sustainable Development Reserve, Brazil. Biol. Conserv. 88, 103–109 (1999).

    Article  Google Scholar 

  36. 36.

    Mendonça, W. C. D. S., Marioni, B., Thorbjarnarson, J. B., Magnusson, W. E. & Da Silveira, R. Caiman hunting in Central Amazonia, Brazil. J. Wildl. Manage. 80, 1497–1502 (2016).

    Article  Google Scholar 

  37. 37.

    Peres, C. A. & Carkeek, A. M. How caimans protect fish stocks in western Brazilian Amazonia: a case for maintaining the ban on caiman hunting. Oryx 27, 225–230 (1993).

    Article  Google Scholar 

  38. 38.

    Downing, A. L., Brown, B. L. & Leibold, M. A. Multiple diversity-stability mechanisms enhance population and community stability in aquatic food webs. Ecology 95, 173–184 (2014).

    Article  Google Scholar 

  39. 39.

    Del Viejo, A. M., Vega, X., González, M. A. & Sánchez, J. M. Disturbance sources, human predation and reproductive success of seabirds in tropical coastal ecosystems of Sinaloa State, Mexico. Bird Conserv. Int. 14, 191–202 (2004).

    Article  Google Scholar 

  40. 40.

    Laundre, J. W., Hernandez, L. & Ripple, W. J. The landscape of fear: ecological implications of being afraid. Open Ecol. J. 3, 1–7 (2010).

    Article  Google Scholar 

  41. 41.

    Whelan, C. J., Wenny, D. G. & Marquis, R. J. Ecosystem services provided by birds. Ann. N. Y. Acad. Sci. 1134, 25–60 (2008).

    Article  Google Scholar 

  42. 42.

    Cederholm, C. J., Kunze, M. D., Murota, T. & Sibatani, A. Pacific salmon carcasses: essential contributions of nutrients and energy for aquatic and terrestrial ecosystems. Fisheries 24, 6–15 (1999).

    Article  Google Scholar 

  43. 43.

    Alves, R. R. N. et al. A review on human attitudes towards reptiles in Brazil. Environ. Monit. Assess. 184, 6877–6901 (2012).

    Article  Google Scholar 

  44. 44.

    Campos-Silva, J. V., da Fonseca Junior, S. F. & da Silva Peres, C. A. Policy reversals do not bode well for conservation in Brazilian Amazonia. Nat. Conservacao 13, 193–195 (2015).

    Article  Google Scholar 

  45. 45.

    Ferraro, P. J. & Kiss, A. Ecology. Direct payments to conserve biodiversity. Science 298, 1718–1719 (2002).

    CAS  Article  Google Scholar 

  46. 46.

    Alho, C. J. Conservation and management strategies for commonly exploited Amazonian turtles. Biol. Conserv. 32, 291–298 (1985).

    Article  Google Scholar 

  47. 47.

    Campos-Silva, J. V., Peres, C. A., Antunes, A. P., Valsecchi, J. & Pezzuti, J. Community-based population recovery of overexploited Amazonian wildlife. Perspect. Ecol. Conserv. 15, 266–270 (2017).

    Article  Google Scholar 

  48. 48.

    Balmford, A. & Knowlton, N. Why Earth optimism? Science 356, 225 (2017).

    CAS  Article  Google Scholar 

  49. 49.

    Fagundes, C. K., Vogt, R. C. & De Marco Júnior, P. Testing the efficiency of protected areas in the Amazon for conserving freshwater turtles. Divers. Distrib. 22, 123–135 (2016).

    Article  Google Scholar 

  50. 50.

    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: a Practical Information-Theoretic Approach (Springer, New York, 2002).

    Google Scholar 

Download references


This study was funded by a Darwin Initiative for the Survival of Species (Defra, 20-001) grant awarded to C.A.P., a CAPES PhD scholarship (1144985) and CAPES postdoctoral grant (1666302) to J.V.C.S. and a CAPES postdoctoral grant (1530532) and internal funding from Anglia Ruskin University to J.E.H. We thank the Departamento de Mudanças Climáticas e Unidades de Conservação (DEMUC) do Amazonas and Instituto Brasileiro do Meio Ambiente e Recursos Naturais Renováveis/Instituto Chico Mendes de Conservação da Biodiversidade (IBAMA/ICMBio) for authorizing the research. We also thank Projeto Pé-de-Pincha at Universidade Federal do Amazonas, supported by Programa Petrobras Ambiental. We are very grateful for the participation of all beach guards and the cooperation of all communities in the Médio Juruá region, including the community associations ASPROC and AMARU. We are grateful to P. Cook and Bomba for assisting with data collection on terrestrial invertebrates and catfish; F. Baccaro, W. Fróes and H. Lazzarotto for assistance with the identification of terrestrial invertebrates and catfish; A. Carvalho and M. de Assumpção for comments on an earlier version of the manuscript; and C. Ferrara, H. Costa, G. Leite and R. Cintra for photographs. This publication is part of the Projeto Médio Juruá series on ‘Resource Management in Amazonian Reserves’ (

Author information




J.V.C.S., J.E.H. and C.A.P. designed the study. J.V.C.S, J.E.H., P.C.M.A. and C.A.P. collected the data. J.V.C.S and C.A.P. analysed the data. J.V.C.S, J.E.H., P.C.M.A and C.A.P. wrote the paper.

Corresponding author

Correspondence to João V. Campos-Silva.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary Figures 1–8, Supplementary Tables 1–4, Supplementary Video 1 Caption, Supplementary References 1–26

Supplementary Video 1

Fluvial beaches along the Juruá River in the Western Brazilian Amazon, which provide critical nesting habitats for freshwater turtles and other taxa including birds

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Campos-Silva, J.V., Hawes, J.E., Andrade, P.C.M. et al. Unintended multispecies co-benefits of an Amazonian community-based conservation programme. Nat Sustain 1, 650–656 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing