Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Quantifying resilience to recurrent ecosystem disturbances using flow–kick dynamics


Shifting ecosystem disturbance patterns due to climate change (for example, storms, droughts and wildfires) or direct human interference (for example, harvests and nutrient loading) highlight the importance of quantifying and strengthening the resilience of desired ecological regimes. Although existing metrics capture resilience to isolated shocks, gradual parameter changes, and continual noise, quantifying resilience to repeated, discrete disturbance events requires different analytical tools. Here, we introduce a mathematical flow–kick framework that uses dynamical systems tools to quantify resilience to disturbances explicitly in terms of their magnitude and frequency. We identify a boundary between disturbance regimes that cause either escape from, or stabilization within, a basin of attraction. We use the boundary to define resilience metrics tailored to repeated, discrete perturbations. The flow–kick model suggests that the distance-to-threshold resilience metric overestimates resilience in the context of repeated perturbations. It also reveals counterintuitive triggers for regime shifts. These include increasing the periods between disturbance events in proportion to increases to disturbance magnitude, and—in systems with multiple dynamic variables—increasing time periods between disturbances of constant magnitude.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A flow–kick model of repeated harvests from a fishery.
Fig. 2: Flow–kick resilience boundary in disturbance space.
Fig. 3: Shorter distance to threshold in a flow–kick system.
Fig. 4: Connections between the flow–kick resilience boundary and existing resilience metrics illustrated in a model of lake water quality.
Fig. 5: Flow–kick dynamics in a two-dimensional model of ocean circulation.

Similar content being viewed by others

Data availability

The MATLAB scripts and functions used in the study are available from the open-source GitHub repository at


  1. IPCC Climate Change 2014: Synthesis Report (eds Core Writing Team, Pachauri, R. K. & Meyer, L. A.) (IPCC, 2014).

  2. Dale, V. H. et al. Climate change and forest disturbances. BioScience 51, 723–734 (2001).

    Article  Google Scholar 

  3. Russell-Smith, J. & Thornton, R. Perspectives on prescribed burning. Front. Ecol. Environ. 11, e3 (2013).

    Article  Google Scholar 

  4. Reid, W. V. et al. Ecosystems and Human Well-being: Synthesis. A Report of the Millennium Ecosystem Assessment (Island Press, 2005).

  5. Kareiva, P., Tallis, H., Rickets, T. H., Daily, G. C. & Polasky, S. Natural Capital: Theory and Practice of Mapping Ecosystem Services (Oxford Univ. Press, Oxford, 2011).

  6. Walker, B. & Salt, D. Resilience Thinking: Sustaining Ecosystems and People in a Changing World (Island Press, Washington DC, 2006).

  7. Carpenter, S. R., Walker, B., Anderies, J. M. & Abel, N. From metaphor to measurement: resilience of what to what? Ecosystems 4, 765–781 (2001).

    Article  Google Scholar 

  8. Meyer, K. A mathematical review of resilience in ecology. Nat. Resour. Model. 29, 339–352 (2016).

    Article  Google Scholar 

  9. Levin, S. A. & Lubchenco, J. Resilience, robustness, and marine ecosystem-based management. BioScience 58, 27–32 (2008).

    Article  Google Scholar 

  10. Walker, B., Holling, C. S., Carpenter, S. R. & Kinzig, A. Resilience, adaptability and transformability in social–ecological systems. Ecol. Soc. 9, 5 (2004).

    Article  Google Scholar 

  11. Menck, P. J., Heitzig, J., Marwan, N. & Kurths, J. How basin stability complements the linear-stability paradigm. Nat. Phys. 9, 89–92 (2013).

    Article  CAS  Google Scholar 

  12. Beisner, B. E., Dent, C. L. & Carpenter, S. R. Variability of lakes on the landscape: roles of phosphorus, food webs, and dissolved organic carbon. Ecology 84, 1563–1575 (2003).

    Article  Google Scholar 

  13. Pimm, S. L. The complexity and stability of ecosystems. Nature 307, 321–326 (1984).

    Article  Google Scholar 

  14. Ingrish, J. & Bahn, M. Towards a comparable quantification of resilience. Trends Ecol. Evol. 33, 251–259 (2018).

    Article  Google Scholar 

  15. Paine, R. T., Tegner, M. J. & Johnson, E. A. Compounded perturbations yield ecological surprises. Ecosystems 1, 535–545 (1998).

    Article  Google Scholar 

  16. Dennis, B., Assas, L., Elaydi, S., Kwessi, E. & Livadiotis, G. Allee effects and resilience in stochastic populations. Theor. Ecol. 9, 323–335 (2015).

    Article  Google Scholar 

  17. Ives, A. R. & Carpenter, S. R. Stability and diversity of ecosystems. Science 317, 58–62 (2007).

    Article  CAS  Google Scholar 

  18. Turner, M. Disturbance and landscape dynamics in a changing world. Ecology 91, 2833–2849 (2010).

    Article  Google Scholar 

  19. Sousa, W. P. The role of disturbance in natural communities. Annu. Rev. Ecol. Syst. 15, 353–391 (1984).

    Article  Google Scholar 

  20. White, P. S. & Pickett, S. T. A. in The Ecology of Natural Disturbance and Patch Dynamics Ch. 1 (Academic Press, New York, 1985).

    Google Scholar 

  21. Resilience Alliance Assessing Resilience in Social-Ecological Systems: Workbook for Practitioners Revised Version 2.0 (2010);

  22. Hobbs, R. J. & Huenneke, L. F. Disturbance, diversity, and invasion: implications for conservation. Conserv. Biol. 6, 324–337 (1992).

    Article  Google Scholar 

  23. Miller, A. D., Roxburgh, S. H. & Shea, K. How frequency and intensity shape diversity–disturbance relationships. Proc. Natl Acad. Sci. USA 108, 5643–5648 (2011).

    Article  CAS  Google Scholar 

  24. Mack, M. C. & D’Antonio, C. M. Impacts of biological invasions on disturbance regimes. Trends Ecol. Evol. 13, 195–198 (1998).

    Article  CAS  Google Scholar 

  25. Noble, I. R. & Slatyer, R. O. The use of vital attributes to predict successional changes in plant communities subject to recurrent disturbances. Vegetatio 43, 5–21 (1980).

    Article  Google Scholar 

  26. Turner, M. G., Romme, W. H., Gardner, R. H., O’Neill, R. V. & Kratz, T. K. A revised concept of landscape equilibrium: disturbance and stability on scaled landscapes. Landsc. Ecol. 8, 213–227 (1993).

    Article  Google Scholar 

  27. Fraterrigo, J. M. & Rusak, J. A. Disturbance-driven changes in the variability of ecological patterns and processes. Ecol. Lett. 11, 756–770 (2008).

    Article  Google Scholar 

  28. Ratajczak, Z., Nippert, J. B., Briggs, J. M. & Blair, J. M. Fire dynamics distinguish grasslands, shrublands and woodlands as alternative attractors in the Central Great Plains of North America. J. Ecol. 102, 1374–1385 (2014).

    Article  Google Scholar 

  29. Ippolito, S., Naudot, V. & Noonburg, E. G. Alternative stable states, coral reefs, and smooth dynamics with a kick. Bull. Math. Biol. 78, 413–435 (2016).

    Article  Google Scholar 

  30. Ackman, O., Comar, T. D. & Hrozencik, D. On impulsive integrated pest management models with stochastic effects. Front. Neurosci. 9, 119 (2015).

    Google Scholar 

  31. Folke, C. et al. Regime shifts, resilience, and biodiversity in ecosystem management. Annu. Rev. Ecol. Evol. Syst. 35, 557–581 (2004).

    Article  Google Scholar 

  32. Daniel, C., Frid, L., Sleeter, B. M. & Fortin, M. J. State-and-transition simulation models: a framework for forecasting landscape change. Methods Ecol. Evol. 7, 1413–1423 (2016).

    Article  Google Scholar 

  33. Seidl, R., Rammer, W., Scheller, R. M. & Spies, T. A. An individual-based process model to simulate landscape-scale forest ecosystem dynamics. Ecol. Model. 231, 87–100 (2012).

    Article  Google Scholar 

  34. Hirsch, M. W., Smale, S. & Devaney, R. L. Differential Equations, Dynamical Systems, and an Introduction to Chaos (Elsevier, Oxford, 2013).

    Chapter  Google Scholar 

  35. Tchuinté Tamen, A., Dumont, Y., Tewa, J. J., Bowong, S. & Couteron, P. A minimalistic model of tree–grass interactions using impulsive differential equations and non-linear feedback functions of grass biomass onto fire-induced tree mortality. Math. Comput. Simul. 133, 265–297 (2017).

    Article  Google Scholar 

  36. Lakshmikantham, V., Bainov, D. D. & Simeonov, P. S. Theory of Impulsive Differential Equations (World Scientific Publishing, Singapore, 1989).

  37. Courchamp, F., Clutton-Brock, T. & Grenfell, B. Inverse density dependence and the Allee effect. Trends Ecol. Evol. 4, 405–410 (1999).

    Article  Google Scholar 

  38. Gascoigne, J. & Lipcius, R. N. Allee effects in marine systems. Mar. Ecol. Prog. Ser. 269, 49–59 (2004).

    Article  Google Scholar 

  39. Keith, D. M. & Hutchings, J. A. Population dynamics of marine fishes at low abundance. Can. J. Fish. Aquat. Sci. 69, 1150–1163 (2012).

    Article  Google Scholar 

  40. Scheffer, M., Carpenter, S., Foley, J. A., Folke, C. & Walker, B. Catastrophic shifts in ecosystems. Nature 413, 591–596 (2001).

    Article  CAS  Google Scholar 

  41. Carpenter, S. R., Ludwig, D. & Brock, W. A. Management of eutrophication for lakes subject to potentially irreversible change. Ecol. Appl. 9, 751–771 (1999).

    Article  Google Scholar 

  42. Wang, R. et al. Flickering gives early warning signals of a critical transition to a eutrophic lake state. Nature 492, 419–422 (2012).

    Article  Google Scholar 

  43. Stommel, H. Thermohaline convection with two stable regimes of flow. Tellus 13, 224–230 (1961).

    Article  Google Scholar 

  44. Thornalley, D. J. R. et al. Anomalously weak Labrador Sea convection and Atlantic overturning during the past 150 years. Nature 556, 227–230 (2018).

    Article  CAS  Google Scholar 

  45. Jackson, L. C. et al. Global and European climate impacts of a slowdown of the AMOC in a high resolution GCM. Clim. Dynam. 45, 3299–3316 (2015).

    Article  Google Scholar 

  46. Fairbanks, R. G. A 17,000-year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature 342, 637–642 (1989).

    Article  Google Scholar 

  47. Cessi, P. A simple box model of stochastically forced thermohaline flow. J. Phys. Oceanogr. 24, 1911–1920 (1994).

    Article  Google Scholar 

  48. Van Nes, E. H. & Scheffer, M. Slow recovery from perturbations as a generic indicator of a nearby catastrophic shift. Am. Nat. 169, 738–747 (2007).

    Article  Google Scholar 

  49. May, R. M. Thresholds and breakpoints in ecosystems with a multiplicity of stable states. Nature 269, 471–477 (1977).

    Article  Google Scholar 

  50. Zeeman, M. L. et al. Resilience of socially valued properties of natural systems to repeated disturbance: a framework to support value-laden management decisions. Nat. Resour. Model. 31, e12170 (2018).

    Article  Google Scholar 

Download references


This work was supported by an NSF Graduate Research Fellowship (grant number 00039202 to K.M.), the Mathematics and Climate Change Research Network (NFS grant DMS-0940243) and the Computational Sustainability Network (NSF grant CCS-1521672). Thanks go to A. Shaw, L. Sullivan, J. Cowles, K. Kimmel, E. Strombom, F. Isbell and A. Rossberg for feedback on various stages of the manuscript. We are also indebted to the Ecology Theory Group at the University of Minnesota, and A. Helfgott, S. Lord, D. McGehee and C. Chong for helpful conversations.

Author information

Authors and Affiliations



M.L.Z. and S.I. conceived of the flow–kick model of disturbance. All authors contributed to development of the model and analysis of the resulting dynamics. K.M. wrote the manuscript, and S.I., A.H.-L., I.K., V.L., E.B. and M.L.Z. contributed to the revisions.

Corresponding author

Correspondence to Katherine Meyer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–2, Supplementary Methods, Supplementary Figures 1–3, Supplementary Discussion, Supplementary References

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meyer, K., Hoyer-Leitzel, A., Iams, S. et al. Quantifying resilience to recurrent ecosystem disturbances using flow–kick dynamics. Nat Sustain 1, 671–678 (2018).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing