Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Estimation of global recoverable human and animal faecal biomass


Human and animal faeces present persistent threats to global public health and also opportunities for recovery of resources. We present the first global-scale accounting of recoverable faeces (livestock animal and human) from 2003 to 2030 using country-specific human and animal population estimates and estimated species-specific faeces production by human or animal body mass. We also examine global coverage of domestic livestock animals and sanitation facilities to describe the distribution of onsite versus offsite hazards from animal and human faeces. In 2014, the total mass of faeces was 3.9 × 1012 kg per year, increasing by >52 × 109 kg per year since 2003 and anticipated to reach at least 4.6 × 1012 kg in 2030. Annual global production of faeces from animals (primarily cattle, chickens and sheep) was about four times that from humans. Ratios of animal faeces to human faeces continue to increase (geometric mean of 4.2:1 for 2003 versus 5.0:1 for 2014 versus a projected 6.0:1 for 2030). Low-income populations bear the greatest burden of onsite faeces, mostly from animals in or near the domestic environment. This analysis highlights the challenges of resource recovery from concentrated and dispersed sources of faeces, and the global public health policy needed for safe management of animal faeces.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Country-level estimates for percentage of the world’s faeces production in 2014.
Fig. 2: Country-level animal faeces to human faeces ratios.
Fig. 3: Country-level animal faeces to human faeces ratios, 2003–2014.

Similar content being viewed by others

Data availability

All data on animal sizes and population estimates were obtained from tables or figures in manuscripts listed and publicly available datasets (DHS data available from the DHS programme:; MICS data available from UNICEF: A final dataset of the faeces estimates supporting this manuscript is available from the corresponding author upon request.


  1. Gerland, P. et al. World population stabilization unlikely this century. Science 346, 234–237 (2014).

    Article  CAS  Google Scholar 

  2. World Urbanization Prospects, 2014 Revision (United Nations, 2015).

  3. Rose, C., Parker, A., Jefferson, B. & Cartmell, E. The characterization of feces and urine: a review of the literature to inform advanced treatment technology. Crit. Rev. Environ. Sci. Technol. 45, 1827–1879 (2015).

    Article  CAS  Google Scholar 

  4. Clasen, T. et al. Interventions to Improve Disposal of Human Eexcreta for Preventing Diarrhoea (Review) (2010);

  5. Penakalapati, G. et al. Exposure to animal feces and human health: a systematic review and proposed research priorities. Environ. Sci. Technol. 51, 11537–11552 (2017).

    Article  CAS  Google Scholar 

  6. Alirol, E., Getaz, L., Stoll, B., Chappuis, F. & Loutan, L. Urbanisation and infectious diseases in a globalised world. Lancet Infect. Dis. 11, 131–141 (2011).

    Article  Google Scholar 

  7. Wielemaker, R. C., Weijma, J. & Zeeman, G. Harvest to harvest: recovering nutrients with new sanitation systems for reuse in urban agriculture. Resour. Conserv. Recycl. 128, 426–437 (2018).

    Article  Google Scholar 

  8. Otoo, M. & Hanjra, M A. in Wastewater: Economic Asset in an Urbanizing World (eds P. Drechsel et al.) 247–268 (Springer, Netherlands, 2015).

  9. Westerhoff, P. et al. Characterization, recovery opportunities, and valuation of metals in municipal sludges from U.S. wastewater treatment plants nationwide. Environ. Sci. Technol. 49, 9479–9488 (2015).

    Article  CAS  Google Scholar 

  10. Mihelcic, J. R., Fry, L. M. & Shaw, R. Global potential of phosphorus recovery from human urine and feces. Chemosphere 84, 832–839 (2011).

    Article  CAS  Google Scholar 

  11. Batstone, D. J., Hülsen, T., Mehta, C. M. & Keller, J. Platforms for energy and nutrient recovery from domestic wastewater: A review. Chemosphere 140, 2–11 (2015).

    Article  CAS  Google Scholar 

  12. Smith, L. W. & Wheeler, W. E. Nutritional and economic value of animal excreta. J. Anim. Sci. 48, 144–156 (1979).

    Article  CAS  Google Scholar 

  13. Stenström, T. A., Seidu, R., Nelson, E. & Christian, Z. Microbial Exposure and Health Assessments in Sanitation Technologies and Systems (Stockholm Environment Institute, Stockholm, 2011);

  14. Prüss-Ustün, A. et al. Burden of disease from inadequate water, sanitation and hygiene in low- and middle-income settings: a retrospective analysis of data from 145 countries. Trop. Med. Int. Health 0, 1–12 (2014).

    Google Scholar 

  15. Wolf, J. et al. Systematic review: assessing the impact of drinking water and sanitation on diarrhoeal disease in low- and middle-income settings: Systematic review and meta-regression. Trop. Med. Int. Health 19, 928–942 (2014).

    Article  Google Scholar 

  16. Berendes, D. et al. Household sanitation is associated with lower risk of bacterial and protozoal enteric infections, but not viral infections and diarrhea, in a cohort study in a low-income urban neighborhood in Vellore, India. Trop. Med. Int. Health 22, 1119–1129 (2017).

    Article  Google Scholar 

  17. Mbuya, M. N. N. & Humphrey, J. H. Preventing environmental enteric dysfunction through improved water, sanitation and hygiene: an opportunity for stunting reduction in developing countries.Matern. Child Nutr. (2015).

    Article  Google Scholar 

  18. Mosites, E. M. et al. The relationship between livestock ownership and child stunting in three countries in eastern Africa using national survey data. PLoS ONE 10, 1–10 (2015).

    Article  Google Scholar 

  19. Kaur, M., Graham, J. P. & Eisenberg, J. N. S. Livestock ownership among rural households and child morbidity and mortality: an analysis of demographic health survey data from 30 Sub-Saharan African countries (2005–2015). Am. J. Trop. Med. Hyg. 96, 16–0664 (2017).

    Article  Google Scholar 

  20. Transforming our World: The 2030 Agenda for Sustainable Development (United Nations, 2015);

  21. Berendes, D. M., Sumner, T. A. & Brown, J. M. Safely managed sanitation for all means fecal sludge management for at least 1.8 × 109 people in low and middle income countries. Environ. Sci. Technol. 51, 3074–3083 (2017).

    Article  CAS  Google Scholar 

  22. Septic Systems Overview (United States Environmental Protection Agency, 2018);

  23. Gebreyes, W.A. et al. The global One Health paradigm: challenges and opportunities for tackling infectious diseases at the human, animal, and environment interface in low-resource settings. PLoS Negl. Trop. Dis. 8, (2014).

    Article  Google Scholar 

  24. Atlas, R. et al. One Health—attaining optimal health for people, animals, and the environment. Microbe 5, 383–389 (2010).

    Google Scholar 

  25. Walpole, S. C. et al. The weight of nations: an estimation of adult human biomass. BMC Public Health 12, 439 (2012).

    Article  Google Scholar 

  26. Population Data (The World Bank, 2017).

  27. Population Estimates and Projections (The World Bank, 2017).

  28. FAOSTAT (Food and Agriculture Organization of the United Nations, 2017);

  29. Progress on Drinking Water, Sanitation and Hygiene (UNICEF/ WHO, 2017);

    Article  Google Scholar 

  30. Seto, K. C., Golden, J. S., Alberti, M. & Turner, B. L. Sustainability in an urbanizing planet. Proc. Natl Acad. Sci. USA 114, 201606037 (2017).

    Article  Google Scholar 

  31. Seto, K. C., Guneralp, B. & Hutyra, L. R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl Acad. Sci. USA 109, 16083–16088 (2012).

    Article  CAS  Google Scholar 

  32. Barnett, G. M. Phosphorus forms in animal manure. Bioresour. Technol. 49, 139–147 (1994).

    Article  CAS  Google Scholar 

  33. Orner, K. D. & Mihelcic, J. R. A review of sanitation technologies to achieve multiple sustainable development goals that promote resource recovery. Environ. Sci. Water Res. Technol. 4, 16–32 (2018).

    Article  CAS  Google Scholar 

  34. Van Loosdrecht, M. C. M. & Brdjanovic, D. Anticipating the next century of wastewater treatment. Science 344, 1452–1453 (2014).

    Article  Google Scholar 

  35. Fytili, D. & Zabaniotou, A. Utilization of sewage sludge in EU application of old and new methods—a review. Renew. Sust. Energ. Rev. 12, 116–140 (2008).

    Article  CAS  Google Scholar 

  36. Cordell, D., Rosemarin, A., Schröder, J. J. & Smit, A. L. Towards global phosphorus security: a systems framework for phosphorus recovery and reuse options. Chemosphere 84, 747–758 (2011).

    Article  CAS  Google Scholar 

  37. Jiménez, B. et al. in Wastewater Irrigation and Health: Assessing and Mitigating Risk in Low-income Countries (eds A., Bahri, P., Drechsel, L., Raschid-Sally. & M., Redwood). 1–27 (Routledge, 2010).

  38. Julian, T. R. Environmental transmission of diarrheal pathogens in low and middle income countries. Environ Sci. Process Impacts 18, 944–955 (2016).

    Article  CAS  Google Scholar 

  39. Kennedy-Walker, R., Holderness, T., Alderson, D., Evans, B. & Barr, S. Network modelling for road-based faecal sludge management. Proc. Inst. Civ. Eng. Civ. Eng. 167, 157–165 (2015).

    Google Scholar 

  40. Dodane, P.-H., Mbéguéré, M., Sow, O. & Strande, L. Capital and operating costs of full-scale fecal sludge management and wastewater treatment systems in Dakar, Senegal. Environ. Sci. Technol. 46, 3705–3711 (2012).

    Article  CAS  Google Scholar 

  41. Chunga, R. M., Ensink, J. H. J., Jenkins, M. W. & Brown, J. Adopt or adapt: Sanitation technology choices in urbanizing Malawi. PLoS ONE 11, 1–16 (2016).

    Article  Google Scholar 

  42. Wright, Ja et al. A spatial analysis of pit latrine density and groundwater source contamination. Environ. Monit. Assess. 185, 4261–4272 (2013).

    Article  CAS  Google Scholar 

  43. Zambrano, L. D., Levy, K., Menezes, N. P. & Freeman, M. C. Human diarrhea infections associated with domestic animal husbandry: a systematic review and meta-analysis. Trans. R. Soc. Trop. Med. Hyg. 108, 313–325 (2014).

    Article  Google Scholar 

  44. Grace, D. Food safety in low and middle income countries. Int. J. Environ. Res. Public Health 12, 10490–10507 (2015).

    Article  CAS  Google Scholar 

  45. Koné, D. Making urban excreta and wastewater management contribute to cities’ economic development: a paradigm shift. Water Policy 12, 602–610 (2010).

    Article  Google Scholar 

  46. Wagner, E. G. & Lanoix, J. N. Excreta Disposal for Rural Areas and Small Communities (WHO, 1958).

  47. Pullan, R. L., Freeman, M. C., Gething, P. W. & Brooker, S. J. Geographical inequalities in use of improved drinking water supply and sanitation across Sub-Saharan Africa: mapping and spatial analysis of cross-sectional survey data. PLoS Med. 11, e1001626 (2014).

    Article  Google Scholar 

  48. Osgood-Zimmerman, A. et al. Mapping child growth failure in Africa between 2000 and 2015. Nature 555, 41–47 (2018).

    Article  CAS  Google Scholar 

  49. Yang, P. J., LaMarca, M., Kaminski, C., Chu, D. I. & Hu, D. L. Hydrodynamics of defecation. Soft Matter 13, 4960–4970 (2017).

    Article  CAS  Google Scholar 

  50. Godfray, H. C. J. et al. The challenge of food security. Science 327, 812–818 (2010).

    Article  CAS  Google Scholar 

  51. Izenberg, M., Johns-Yost, O., Johnson, P. D. & Brown, J. Nocturnal convenience: the problem of securing universal sanitation access in Alabamaas black belt. Environ. Justice 6, 200–205 (2013).

    Article  Google Scholar 

  52. CHNS: China Health and Nutrition Survey (UNC Carolina Population Center, 2009);

  53. Integrated Public Use Microdata Series, International: Version 6.5 [dataset] (Minnesota Population Center, 2017);

  54. U.S. Pet Ownership & Demographics Sourcebook (American Veterinary Medical Association, 2012);

  55. Pet Ownership Internationally: Global GfK Survey (GfK, 2016);

  56. The European Pet Food Industry. Key Facts & Figures (FEDIAF, 2016);

  57. Kifle, Y. W. et al. Animal ownership and touching enrich the context of social contacts relevant to the spread of human infectious diseases. PLoS ONE 10, 1–13 (2015).

    Article  Google Scholar 

  58. Elkhoraibi, C., Blatchford, R. A., Pitesky, M. E. & Mench, J. A. Backyard chickens in the United States: a survey of flock owners. Poult. Sci. 93, 2920–2931 (2014).

    Article  CAS  Google Scholar 

  59. Urban Chicken Ownership in Four U.S. Cities (USDA, 2013);

  60. Lowder, S. K., Skoet, J. & Raney, T. The number, size, and distribution of farms, smallholder farms, and family farms worldwide. World Dev. 87, 16–29 (2016).

    Article  Google Scholar 

  61. McClintock, N., Pallana, E. & Wooten, H. Urban livestock ownership, management, and regulation in the United States: an exploratory survey and research agenda. Land Use Policy 38, 426–440 (2014).

    Article  Google Scholar 

  62. R: A Language and Environment for Statistical Computing (R. Core Team, 2015);

  63. Animal Diversity Web (University of Michigan Museum of Zoology, 2014);

  64. Salama, M. A. M. & Shalles, R. R. Growth of water buffalo, Bubalus arnee. Trop. Agric. 69, 239–242 (1992).

    Google Scholar 

  65. Fabbriciani, C., Lucania, L., Milano, G., Schiavone Panni, A. & Evangelisti, M. Meniscal allografts: cryopreservation vs deep-frozen technique. An experimental study in goats. Knee Surg. Sports Traumatol. Arthrosc. 5, 124–134 (1997).

    Article  CAS  Google Scholar 

  66. Mishra, S. & Rai, S. N. Influence of varying RDP:UDP ratios in diets on digestion, nitrogen utilization and milk production efficiency in goats. Small Rumin. Res. 20, 39–45 (1996).

    Article  Google Scholar 

  67. Snyman, M. A. & Olivier, J. J. Genetic parameters for body weight, fleece weight and fibre diameter in South African Angora goats. Livest. Prod. Sci. 47, 1–6 (1996).

    Article  Google Scholar 

  68. Kugler, W., Grünenfelder, H.-P. & Broxham, E. Donkey Breeds in Europe. Inventory, Description, Need for Action Report 2007/2008 (Monitoring Institute for Rare Breeds and Seeds in Europe, 2008);

  69. Ruusunen, M. & Puolanne, E. Histochemical properties of fibre types in muscles of wild and domestic pigs and the effect of growth rate on muscle fibre properties. Meat Sci. 67, 533–539 (2004).

    Article  CAS  Google Scholar 

  70. Kafi, M., Safdarian, M. & Hashemi, M. Seasonal variation in semen characteristics, scrotal circumference and libido of Persian Karakul rams. Small Rumin. Res. 53, 133–139 (2004).

    Article  Google Scholar 

  71. Keller, D. G., Lawson, J. E. & Peters, H. F. Diameter of muscle fibers and composition of selected retail cuts from Cattalo and Hereford carcasses. Can. J. Anim. Sci. 57, 509–517 (1977).

    Article  Google Scholar 

  72. Johnston, R.F. in Rock Dove (Columba livia). (eds A., Poole, P., Stettenheim. & F., Gill).The Birds of North America. (The Academy of Natural Sciences: Washington DC, 1992.

  73. Williams, C. Poultry Waste Management in Developing Countries (Food and Agriculture Organization of the United Nations, 2009):

  74. Canada Geese Facts and Management Options. Environmental Fact Sheet (New Hampshire Department of Environmental Services, 2012);

  75. Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models ssing lme4. J. Stat. Softw. 67, 1–48 (2014).

    Google Scholar 

Download references


The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention.

Author information

Authors and Affiliations



D.B. and J.B. conceived of the analysis. D.B., P.Y., D.H. and J.B. planned the analysis. D.B. and P.Y. obtained data and conducted the analysis. D.B. wrote the initial manuscript and created all figures and tables. D.B., P.Y., A.L., D.H. and J.B. contributed edits and sections to the manuscript.

Corresponding author

Correspondence to Joe Brown.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–3, Supplementary Methods, Supplementary Discussion, Supplementary Tables 1–3, Supplementary References 1–2

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berendes, D.M., Yang, P.J., Lai, A. et al. Estimation of global recoverable human and animal faecal biomass. Nat Sustain 1, 679–685 (2018).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing