Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Water shortages worsened by reservoir effects


The expansion of reservoirs to cope with droughts and water shortages is hotly debated in many places around the world. We argue that there are two counterintuitive dynamics that should be considered in this debate: supply–demand cycles and reservoir effects. Supply–demand cycles describe instances where increasing water supply enables higher water demand, which can quickly offset the initial benefits of reservoirs. Reservoir effects refer to cases where over-reliance on reservoirs increases vulnerability, and therefore increases the potential damage caused by droughts. Here we illustrate these counterintuitive dynamics with global and local examples, and discuss policy and research implications.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Water supply to cope with water shortage.
Fig. 2: Water supply can worsen water shortage.
Fig. 3: Global reservoir storage capacity versus water demand.
Fig. 4: Local examples of the supply–demand cycles over multiple decades.


  1. 1.

    Dunning, N. P., Beach, T. P. & Luzzadder-Beach, S. Collapse and resilience in lowland Maya civilization. Proc. Natl Acad. Sci. USA 109, 3652–3657 (2012).

    CAS  Article  Google Scholar 

  2. 2.

    Jaramillo, F. & Destouni, G. Local flow regulation and irrigation raise global human water consumption and footprint. Science 350, 1248–1251 (2015).

    CAS  Article  Google Scholar 

  3. 3.

    Vörösmarty, C. J., Pahl-Wostl, C., Bunn, S. & Lawford, R. Global water, the Anthropocene and the transformation of science. Curr. Opin. Environ. Sustain. 5, 539–550 (2013).

    Article  Google Scholar 

  4. 4.

    AghaKouchak, A., Feldman, D., Hoerling, M., Huxman, T. & Lund, J. Water and climate: recognize anthropogenic drought. Nature 524, 409–4011 (2015).

    CAS  Article  Google Scholar 

  5. 5.

    Van Loon, A. F. et al. Drought in the Anthropocene. Nat. Geosci. 9, 89–9 (2016).

    Article  Google Scholar 

  6. 6.

    Wanders, N., Wada, Y. & Van Lanen, H. A. J. Global hydrological droughts in the 21st century under a changing hydrological regime. Earth Syst. Dyn. 6, 1–15 (2015).

    Article  Google Scholar 

  7. 7.

    Di Baldassarre, G., Martinez, F., Kalantari, Z. & Viglione, A. Drought and flood in the Anthropocene: feedback mechanisms in reservoir operation. Earth Syst. Dyn. 8, 225–233 (2017).

    Article  Google Scholar 

  8. 8.

    Veldkamp, T. I. E. et al. Water scarcity hotspots travel downstream due to human interventions in the 20th and 21st century. Nat. Commun. 8, 15697 (2017).

    CAS  Article  Google Scholar 

  9. 9.

    Gaupp, F., Hall, J. & Dadson, S. The role of storage capacity in coping with intra- and inter-annual water variability in large river basins. Environ. Res. Lett. 10, 125001 (2015).

    Article  Google Scholar 

  10. 10.

    Ehsani, N., Vörösmarty, C. J., Fekete, B. M. & Stakhiv, E. Z. Reservoirs operations under climate change: storage capacity options to mitigate risk. J. Hydrol. 555, 435–446 (2017).

    Article  Google Scholar 

  11. 11.

    Pokhrel, Y. N., Hanasaki, N., Wada, Y. & Kim, H. Recent progresses in incorporating human land — water management into global land surface models toward their integration into Earth system models. WIREs Water 3, 548–574 (2016).

    Article  Google Scholar 

  12. 12.

    Lehner, B. et al. High-resolution mapping of the world’s reservoirs and dams for sustainable river-flow management. Front. Ecol. Environ. 9, 494–502 (2011).

    Article  Google Scholar 

  13. 13.

    Chao, B. F., Wu, Y. H. & Li, Y. S. Impact of artificial reservoir water impoundment on global sea level. Science 320, 212–214 (2008).

    CAS  Article  Google Scholar 

  14. 14.

    Vörösmarty, C. J. et al. Anthropogenic sediment retention: Major global impact from registered river impoundments. Glob. Planet. Change 39, 169–190 (2003).

    Article  Google Scholar 

  15. 15.

    Wada, Y., Gleeson, T. & Esnault, L. Wedge approach to water stress. Nat. Geosci. 7, 615–617 (2014).

    CAS  Article  Google Scholar 

  16. 16.

    Vörösmarty, C. J., Green, P., Salisbury, J. & Lammers, R. B. Global water resources: vulnerability from climate change and population growth. Science 289, 284–288 (2000).

    Article  Google Scholar 

  17. 17.

    Brown, C. & Lall, U. Water and economic development: the role of variability and a framework for resilience. Nat. Resour. Forum 30, 306–317 (2006).

    Article  Google Scholar 

  18. 18.

    Briscoe, J. Water security: why it matters and what to do about it. Innov. Technol. Gov. Global. 4, 3–28 (2009).

    Article  Google Scholar 

  19. 19.

    Gray, D. & Sadoff, C. W. Water for Growth and Development (World Bank, Washington DC, 2006).

  20. 20.

    Briscoe, J. Practice and teaching of American water management in a changing world. J. Water Resour. Plann. Manage. 136, 409–411 (2010).

    Article  Google Scholar 

  21. 21.

    Gleick, P. H. Global freshwater resources: soft-path solutions for the 21st century. Science 302, 1524–1528 (2003).

    CAS  Article  Google Scholar 

  22. 22.

    Ahlers, R., Brandimarte, L., Kleemans, I. & Hashmat Sadat, S. Ambitious development on fragile foundations: criticalities of current large dam construction in Afghanistan. Geoforum 54, 49–58 (2014).

    Article  Google Scholar 

  23. 23.

    Gernaat, D. E. H. J., Bogaart, P. W., van Vuuren, D. P., Biemans, H. & Niessink, R. High-resolution assessment of global technical and economic hydropower potential. Nat. Energy 2, 821–828 (2017).

    Article  Google Scholar 

  24. 24.

    Ansar, A., Flyvbjerg, B., Budzier, A. & Lunn, D. Should we build more large dams? The actual costs of hydropower megaproject development. Energy Policy 69, 43–56 (2014).

    Article  Google Scholar 

  25. 25.

    Latrubesse, E. M. et al. Damming the rivers of the Amazon Basin. Nature 546, 363–369 (2017).

    CAS  Article  Google Scholar 

  26. 26.

    Wanders, N. & Wada, Y. Y. Human and climate impacts on the 21st century hydrological drought. J. Hydrol. 526, 208–220 (2015).

    Article  Google Scholar 

  27. 27.

    He, X., Wada, Y., Wanders, N. & Sheffield, J. Intensification of hydrological drought in California by human water management. Geophys. Res. Lett. 44, 1777–1785 (2017).

    Google Scholar 

  28. 28.

    AghaKouchak, A. et al. Aral Sea syndrome desiccates Lake Urmia: call for action. J. Great Lakes Res. 41, 307–311 (2015).

    Article  Google Scholar 

  29. 29.

    Alborzi, A. et al. Climate-informed environmental inflows to revive a drying lake facing meteorological and anthropogenic droughts. Environ. Res. Lett. 13, 084010 (2018).

    Article  Google Scholar 

  30. 30.

    Ashraf, B. et al. Quantifying anthropogenic stress on groundwater resources. Sci. Rep. 7, 12910 (2017).

    Article  Google Scholar 

  31. 31.

    Molle, F., Wester, P. & Hirsch, P. River basin closure: processes, implications and responses. Agric. Water Manage. 97, 569–577 (2010).

    Article  Google Scholar 

  32. 32.

    Van Oel, P. R., Krol, M. S. & Hoekstra, A. Y. Downstreamness: a concept to analyze basin closure. J. Water Resour. Plann. Manage. 137, 404–411 (2011).

    Article  Google Scholar 

  33. 33.

    Kallis, G. Coevolution in water resource development: the vicious cycle of water supply and demand in Athens, Greece. Ecol. Econ. 69, 796–809 (2010).

    Article  Google Scholar 

  34. 34.

    Scarrow, R. M. Sustainable migration to the urban west. Int. J. Sociol. 44, 34–53 (2014).

    Article  Google Scholar 

  35. 35.

    Alcott, B. “Jevons’ paradox”. Ecol. Econ. 54, 9–21 (2005).

    Article  Google Scholar 

  36. 36.

    Berbel, J., Gutiérrez-Martín, C., Rodríguez-Díaz, J. A., Camacho, E. & Montesinos, P. Literature review on rebound effect of water saving measures and analysis of a Spanish case study. Water Resour. Manage. 29, 663–678 (2014).

    Article  Google Scholar 

  37. 37.

    Dumont, A., Mayor, B. & López-Gunn, E. Is the rebound effect or Jevons paradox a useful concept for better management of water resources? Insights from the irrigation modernisation process in Spain. Aquat. Procedia 1, 64–76 (2013).

    Article  Google Scholar 

  38. 38.

    Taylor, R. Ground water and climate change. Nat. Clim. Change 3, 322–329 (2013).

    Article  Google Scholar 

  39. 39.

    Gleeson, T., Wada, Y., Bierkens, M. F. & van Beek, L. P. Water balance of global aquifers revealed by groundwater footprint. Nature 488, 197–200 (2012).

    CAS  Article  Google Scholar 

  40. 40.

    Flörke, M., Schneider, C. & McDonald, R. I. Water competition between cities and agriculture driven by climate change and urban growth. Nat. Sustain. 1, 51–58 (2018).

    Article  Google Scholar 

  41. 41.

    Karavitis, C. A. Drought and urban water supplies: the case of metropolitan Athens. Water Policy 1, 505–524 (1998).

    Article  Google Scholar 

  42. 42.

    Harrison, C. Water Use and Natural Limits in the Las Vegas Valley: A History of The Southern Nevada Water Authority (University of Nevada, Las Vegas, 2009).

  43. 43.

    Morris, R., Devitt, D. A., Crites, Z. A. M., Borden, G. & Allen, L. N. Urbanization and water conservation in Las Vegas Valley, Nevada. J. Water Resour. Plann. Manage. 123, 189–195 (1997).

    Article  Google Scholar 

  44. 44.

    SNWA Water Resources Management Plan (Southern Nevada Water Authority, Las Vegas, 2009).

  45. 45.

    Douglass, W. & Raento, P. The tradition of invention: conceiving Las Vegas. Ann. Tour. Res. 31, 7–23 (2004).

    Article  Google Scholar 

  46. 46.

    van Dijk, A. I. J. M. et al. The Millennium Drought in southeast Australia (2001–2009): natural and human causes and implications for water resources, ecosystems, economy, and society. Water Resour. Res. 49, 1040–1057 (2013).

    Article  Google Scholar 

  47. 47.

    Hemati, A. et al. Deconstructing demand: the anthropogenic and climatic drivers of urban water consumption. Environ. Sci. Technol. 50, 12557–12566 (2016).

    CAS  Article  Google Scholar 

  48. 48.

    Kates, R. W., Colten, C. E., Laska, S. & Leatherman, S. P. Reconstruction of New Orleans after Hurricane Katrina: a research perspective. Proc. Natl Acad. Sci. USA 103, 14653–14660 (2006).

    CAS  Article  Google Scholar 

  49. 49.

    Kuil, L., Carr, G., Viglione, A., Prskawetz, A. & Blöschl, G. Conceptualizing socio-hydrological drought processes: the case of the Maya collapse. Water Resour. Res. 52, 6222–6242 (2016).

    Article  Google Scholar 

  50. 50.

    Burby, R. J. Hurricane Katrina and the paradoxes of government disaster policy: bringing about wise governmental decisions for hazardous areas. Ann. Am. Acad. Polit. Soc. Sci. 604, 171–191 (2006).

    Article  Google Scholar 

  51. 51.

    Di Baldassarre, G. et al. Perspectives on socio-hydrology: capturing feedbacks between physical and social processes. Water Resour. Res. 51, 4770–4781 (2015).

    Article  Google Scholar 

  52. 52.

    Ashton, P. J., Hardwick, D. & Breen, C. M. In Exploring Sustainability Science: A Southern African Perspective (eds M. Burns & A. Weaver) 279–310 (African Sun Media, Stellenbosch, 2008).

  53. 53.

    Anderies, J. M. Managing variance: key policy challenges for the Anthropocene. Proc. Natl Acad. Sci. USA 112, 14402–14403 (2015).

    CAS  Article  Google Scholar 

  54. 54.

    Gleick, P. H. & Palaniappan, M. Peak water limits to freshwater withdrawal and use. Proc. Natl Acad. Sci. USA 107, 11155–11162 (2010).

    CAS  Article  Google Scholar 

  55. 55.

    Burton, I., Kates, R. W. & White, G. F. The Human Ecology of Extreme Geophysical Events 78 (FMHI Publications, 1968).

  56. 56.

    Ostrom, E. A General framework for analyzing sustainability of social-ecological systems. Science 325, 419–422 (2009).

    CAS  Article  Google Scholar 

  57. 57.

    Sivapalan, M., Savenije, H. H. & Blöschl, G. Socio-hydrology: a new science of people and water. Hydrol. Process. 26, 1270–1276 (2012).

    Article  Google Scholar 

  58. 58.

    Birkmann, J. & von Teichman, K. Integrating disaster risk reduction and climate change adaptation: key challenges — scales, knowledge, and norms. Sustain. Sci. 5, 171–184 (2010).

    Article  Google Scholar 

  59. 59.

    Srinivasan, V., Lambin, E. F., Gorelick, S. M., Thompson, B. H. & Rozelle, S. The nature and causes of the global water crisis: syndromes from a meta-analysis of coupled human–water studies. Water Resour. Res. 48, W10516 (2012).

    Article  Google Scholar 

  60. 60.

    Adger, N., Quinn, T., Lorenzoni, I., Murphy, C. & Sweeney, J. Changing social contracts in climate-change adaptation. Nat. Clim. Change 3, 112–117 (2013).

    Article  Google Scholar 

  61. 61.

    Wada, Y., van Beek, L. P. H., Wanders, N. & Bierkens, M. F. P. Human water consumption intensifies hydrological drought worldwide. Environ. Res. Lett. 8, 034036 (2013).

    Article  Google Scholar 

  62. 62.

    Lehner, B., Verdin, K. & Jarvis, A. New global hydrography derived from spaceborne elevation data. EOS 89, 93–94 (2008).

    Article  Google Scholar 

  63. 63.

    Verdon-Kidd, D. C. & Kiem, A. S. Nature and causes of protracted droughts in southeast Australia: comparison between the Federation, WWII, and Big Dry droughts. Geophys. Res. Lett. 36, L22707 (2009).

    Article  Google Scholar 

Download references


G.D.B. was supported by the European Research Council (ERC) within the project ‘HydroSocialExtremes: Uncovering the Mutual Shaping of Hydrological Extremes and Society’, ERC Consolidator Grant No. 771678. N.W. acknowledges the funding from NWO 016.Veni.181.049. S.R. and A.F.V.L. were supported by the NWO project ‘Adding the human dimension to drought’ (2004/08338/ALW). This work was developed within the activities of the working group on Drought in the Anthropocene of the Panta Rhei research initiative of the International Association of Hydrological Sciences (IAHS).

Author information




G.D.B. conceived the study and wrote the manuscript. N.W. developed the global analysis of reservoir storage analysis and water demand. A.A., L.K., S.R., T.I.E.V., M.G., P.R.v.O., K.B. and A.F.V.L. contributed data or insights, discussed the argument and edited the manuscript.

Corresponding author

Correspondence to Giuliano Di Baldassarre.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Di Baldassarre, G., Wanders, N., AghaKouchak, A. et al. Water shortages worsened by reservoir effects. Nat Sustain 1, 617–622 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing