Review Article | Published:

Nexus approaches to global sustainable development


Many global challenges, though interconnected, have been addressed singly, at times reducing one problem while exacerbating others. Nexus approaches simultaneously examine interactions among multiple sectors. Recent quantitative studies have revealed that nexus approaches can uncover synergies and detect trade-offs among sectors. If well implemented, nexus approaches have the potential to reduce negative surprises and promote integrated planning, management and governance. However, application and implementation of nexus approaches are in their infancy. No studies have explicitly quantified the contributions of nexus approaches to progress toward meeting the Sustainable Development Goals. To further implement nexus approaches and realize their potential, we propose a systematic procedure and provide perspectives on future directions. These include expanding nexus frameworks that consider interactions among more sectors, across scales, between adjacent and distant places, and linkages with Sustainable Development Goals; incorporating overlooked drivers and regions; diversifying nexus toolboxes; and making these strategies central in policy-making and governance for integrated Sustainable Development Goal implementation.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Liu, J. et al. Systems integration for global sustainability. Science 347, 1258832 (2015).

  2. 2.

    IPCC Climate Change 2014: Synthesis Report (eds Core Writing Team, Pachauri, R. K. & Meyer L. A.) (IPCC, 2015).

  3. 3.

    The sustainable development agenda. United Nations (2016).

  4. 4.

    Rockström, J. Future Earth. Science 351, 319–319 (2016).

  5. 5.

    Jin, Q., Wei, J., Yang, Z.-L. & Lin, P. Irrigation-induced environmental changes around the Aral Sea: An integrated view from multiple satellite observations. Remote Sensing 9, 900 (2017).

  6. 6.

    Micklin, P. The Aral sea disaster. Annu. Rev. Earth Planet. Sci. 35, 47–72 (2007).

  7. 7.

    Daily, G. Nature’s Services: Societal Dependence On Natural Ecosystems (Island Press, Washington DC, 1997).

  8. 8.

    Costanza, R. et al. Changes in the global value of ecosystem services. Global Environ. Change 26, 152–158 (2014).

  9. 9.

    Hoekstra, A. Y. & Wiedmann, T. O. Humanity’s unsustainable environmental footprint. Science 344, 1114–1117 (2014).

  10. 10.

    Steffen, W. et al. Planetary boundaries: guiding human development on a changing planet. Science 347, 1259855 (2015).

  11. 11.

    Biswas, A. K. Integrated water resources management: Is it working? Int. J. Water Resour. Dev. 24, 5–22 (2008).

  12. 12.

    Sayer, J. et al. Ten principles for a landscape approach to reconciling agriculture, conservation, and other competing land uses. Proc. Natl Acad. Sci. USA 110, 8349–8356 (2013).

  13. 13.

    Botey, A. P., Garvin, T. & Szostak, R. Interdisciplinary research for ecosystem management. Ecosystems 17, 512–521 (2014).

  14. 14.

    Stein, C. et al. Advancing the Water-Energy-Food Nexus: Social Networks and Institutional Interplay in the Blue Nile Report 9290907991 (CGIAR Research Program on Water, Land and Ecosystems, 2014).

  15. 15.

    De Laurentiis, V., Hunt, V. D. & Rogers, D. C. Overcoming food security challenges within an energy/water/food nexus (EWFN) approach. Sustainability 8, 95 (2016).

  16. 16.

    Scott, C. A., Kurian, M. & Wescoat, J. L. Jr in Governing the Nexus (eds. Kurian, M. & Ardakanian, R.) 15–38 (Springer, Cham, 2015).

  17. 17.

    Wichelns, D. The water-energy-food nexus: Is the increasing attention warranted, from either a research or policy perspective? Env. Sci. Pol. 69, 113–123 (2017).

  18. 18.

    Cairns, R. & Krzywoszynska, A. Anatomy of a buzzword: the emergence of ‘the water-energy-food nexus’ in UK natural resource debates. Env. Sci. Pol. 64, 164–170 (2016).

  19. 19.

    Li, X., Feng, K., Siu, Y. L. & Hubacek, K. Energy-water nexus of wind power in China: the balancing act between CO2 emissions and water consumption. Energy Pol. 45, 440–448 (2012).

  20. 20.

    Amón, R., Maulhardt, M., Wong, T., Kazama, D. & Simmons, C. W. Waste heat and water recovery opportunities in California tomato paste processing. Appl. Thermal Eng. 78, 525–532 (2015).

  21. 21.

    Development and globalization: facts and figures. UN (2016).

  22. 22.

    Ringler, C., Bhaduri, A. & Lawford, R. The nexus across water, energy, land and food (WELF): potential for improved resource use efficiency? Curr. Opin. Env. Sustain. 5, 617–624 (2013).

  23. 23.

    Progress on Sanitation and Drinking Water: 2015 Update and MDG Assessment (WHO, UNICEP, 2015).

  24. 24.

    Hunger statistics. WFP (2016).

  25. 25.

    World Energy Outlook 2015 (International Energy Agency, 2015).

  26. 26.

    Walker, R. V., Beck, M. B., Hall, J. W., Dawson, R. J. & Heidrich, O. The energy-water-food nexus: strategic analysis of technologies for transforming the urban metabolism. J. Env. Manag. 141, 104–115 (2014).

  27. 27.

    Hawkesford, M. J. Reducing the reliance on nitrogen fertilizer for wheat production. J. Cereal Sci. 59, 276–283 (2014).

  28. 28.

    Daher, B. T. & Mohtar, R. H. Water-energy-food (WEF) nexus tool 2.0: guiding integrative resource planning and decision-making. Water Int. 40, 748–771 (2015).

  29. 29.

    Daccache, A., Ciurana, J. S., Diaz, J. A. R. & Knox, J. W. Water and energy footprint of irrigated agriculture in the Mediterranean region. Env. Res. Lett. 9, 124014 (2014).

  30. 30.

    Ozkan, B., Akcaoz, H. & Karadeniz, F. Energy requirement and economic analysis of citrus production in Turkey. Energy Conv. Manag. 45, 1821–1830 (2004).

  31. 31.

    Rinaldi, M., Losavio, N. & Flagella, Z. Evaluation and application of the OILCROP–SUN model for sunflower in southern Italy. Agricult. Syst. 78, 17–30 (2003).

  32. 32.

    Hatfield-Dodds, S. et al. Australia is ‘free to choose’ economic growth and falling environmental pressures. Nature 527, 49–53 (2015).

  33. 33.

    Jeswani, H. K., Burkinshaw, R. & Azapagic, A. Environmental sustainability issues in the food-energy-water nexus: breakfast cereals and snacks. Sust. Prod. Consump. 2, 17–28 (2015).

  34. 34.

    Rasul, G. Food, water, and energy security in South Asia: a nexus perspective from the Hindu Kush Himalayan region. Env. Sci. Pol. 39, 35–48 (2014).

  35. 35.

    Lane, J. Biofuel targets around the world: 2016 Biofuels Digest (2016).

  36. 36.

    Vlachogianni, T. & Valavanidis, A. Energy and environmental impact on the biosphere energy flow, storage and conversion in human civilization. Am. J. Educ. Res. 1, 68–78 (2013).

  37. 37.

    Hoff, H. Understanding the Nexus (Bonn2011 Nexus Conference, 2011).

  38. 38.

    Searchinger, T., Edwards, R., Mulligan, D., Heimlich, R. & Plevin, R. Do biofuel policies seek to cut emissions by cutting food? Science 347, 1420–1422 (2015).

  39. 39.

    Searchinger, T. et al. Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319, 1238–1240 (2008).

  40. 40.

    Francis, G., Edinger, R. & Becker, K. A concept for simultaneous wasteland reclamation, fuel production, and socio‐economic development in degraded areas in India: Need, potential and perspectives of Jatropha plantations. Nat. Resour. Forum 29, 12–24 (2005).

  41. 41.

    Ross, A. & Connell, D. The evolution and performance of river basin management in the Murray-Darling Basin. Ecol. Soc. 21, 39 (2016).

  42. 42.

    Zarfl, C., Lumsdon, A. E., Berlekamp, J., Tydecks, L. & Tockner, K. A global boom in hydropower dam construction. Aquat. Sci. 77, 161–170 (2015).

  43. 43.

    Yang, Y. E., Wi, S., Ray, P. A., Brown, C. M. & Khalil, A. F. The future nexus of the Brahmaputra River Basin: climate, water, energy and food trajectories. Global Environ. Change 37, 16–30 (2016).

  44. 44.

    Liu, J. & Yang, W. Water sustainability for China and beyond. Science 337, 649–650 (2012).

  45. 45.

    Rasul, G. Water for growth and development in the Ganges, Brahmaputra, and Meghna basins: an economic perspective. Int. J. River Basin Manag. 13, 387–400 (2015).

  46. 46.

    Rasul, G. Why Eastern Himalayan countries should cooperate in transboundary water resource management. Water Pol. 16, 19–38 (2014).

  47. 47.

    Kraucunas, I. et al. Investigating the nexus of climate, energy, water, and land at decision-relevant scales: the Platform for Regional Integrated Modeling and Analysis (PRIMA). Clim. Change 129, 573–588 (2015).

  48. 48.

    Bartos, M. D. & Chester, M. V. The conservation nexus: valuing interdependent water and energy savings in Arizona. Env. Sci. Technol. 48, 2139–2149 (2014).

  49. 49.

    de Strasser, L., Lipponen, A., Howells, M., Stec, S. & Bréthaut, C. A methodology to assess the water energy food ecosystems nexus in transboundary river basins. Water 8, 59 (2016).

  50. 50.

    Water Security: the Water-Food-Energy-Climate Nexus (World Economic Forum Water Initiative, Island Press, Washington DC, 2012).

  51. 51.

    Mukuve, F. M. & Fenner, R. A. Scale variability of water, land, and energy resource interactions and their influence on the food system in Uganda. Sust. Prod. Consum. 2, 79–95 (2015).

  52. 52.

    Tilman, D. & Clark, M. Global diets link environmental sustainability and human health. Nature 515, 518–522 (2014).

  53. 53.

    Hussey, K. & Pittock, J. The energy-water nexus: managing the links between energy and water for a sustainable future. Ecol. Soc. 17, 31 (2012).

  54. 54.

    Howarth, C. & Monasterolo, I. Opportunities for knowledge co-production across the energy-food-water nexus: Making interdisciplinary approaches work for better climate decision making. Env. Sci. Pol. 75, 103–110 (2017).

  55. 55.

    Conway, D. et al. Climate and southern Africa’s water-energy-food nexus. Nat. Clim. Change 5, 837–846 (2015).

  56. 56.

    Ozturk, I. Sustainability in the food-energy-water nexus: evidence from BRICS (Brazil, the Russian Federation, India, China, and South Africa) countries. Energy 93, 999–1010 (2015).

  57. 57.

    Topi, C., Esposto, E. & Govigli, V. M. The economics of green transition strategies for cities: can low carbon, energy efficient development approaches be adapted to demand side urban water efficiency? Env. Sci. Pol. 58, 74–82 (2016).

  58. 58.

    Manthrithilake, H. & Liyanagama, B. S. Simulation model for participatory decision making: water allocation policy implementation in Sri Lanka. Water Int. 37, 478–491 (2012).

  59. 59.

    Endo, A. et al. Methods of the water-energy-food nexus. Water 7, 5806–5830 (2015).

  60. 60.

    Flammini, A., Puri, M., Pluschke, L. & Dubois, O. Walking the Nexus Talk: Assessing the Water-Energy-Food Nexus in the Context of the Sustainable Energy for All Initiative (FAO, 2017).

  61. 61.

    Weitz, N., Carlsen, H., Nilsson, M. & Skånberg, K. Towards systemic and contextual priority setting for implementing the 2030 Agenda. Sustain. Sci. 13, 531–548 (2018).

  62. 62.

    Pahl-Wostl, C. Governance of the water-energy-food security nexus: A multi-level coordination challenge. Env. Sci. Pol. (2017).

  63. 63.

    El Gafy, I., Grigg, N. & Reagan, W. Dynamic behaviour of the water-food-energy nexus: focus on crop production and consumption. Irrig. Drain. 66, 19–33 (2017).

  64. 64.

    Lawford, R. et al. Basin perspectives on the water-energy-food security nexus. Curr. Opin. Env. Sustain. 5, 607–616 (2013).

  65. 65.

    El Gafy, I., Grigg, N. & Reagan, W. Water-food-energy nexus index to maximize the economic water and energy productivity in an optimal cropping pattern. Water Int. 42, 495–503 (2017).

  66. 66.

    Karnib, A. A Quantitative nexus approach to analyze the interlinkages across the sustainable development goals. J. Sustain. Dev. 10, 173 (2017).

  67. 67.

    Bleischwitz, R., Hoff, H., Spataru, C., van der Voet, E. & VanDeveer, S. D. Routledge Handbook of the Resource Nexus (Routledge, London, 2018).

  68. 68.

    Welsch, M. et al. Adding value with CLEWS-modelling the energy system and its interdependencies for Mauritius. Appl. Energy 113, 1434–1445 (2014).

  69. 69.

    Fasel, M., Brethaut, C., Rouholahnejad, E., Lacayo-Emery, M. A. & Lehmann, A. Blue water scarcity in the Black Sea catchment: Identifying key actors in the water-ecosystem-energy-food nexus. Env. Sci. Pol. 66, 140–150 (2016).

  70. 70.

    Mortensen, J. G. et al. Advancing the food-energy-water nexus: closing nutrient loops in arid river corridors. Env. Sci. Technol. 50, 8485–8496 (2016).

  71. 71.

    Vora, N., Shah, A., Bilec, M. M. & Khanna, V. Food-energy-water nexus: quantifying embodied energy and GHG emissions from irrigation through virtual water transfers in food trade. ACS Sustain. Chem. Eng. 5, 2119–2128 (2017).

  72. 72.

    Wicaksono, A., Jeong, G. & Kang, D. Water, energy, and food nexus: review of global implementation and simulation model development. Water Pol. 19, 440–462 (2017).

  73. 73.

    Dhaubanjar, S., Davidsen, C. & Bauer-Gottwein, P. Multi-objective optimization for analysis of changing trade-offs in the Nepalese water-energy-food nexus with hydropower development. Water 9, 162 (2017).

  74. 74.

    Hussien, W. E. A., Memon, F. A. & Savic, D. A. An integrated model to evaluate water-energy-food nexus at a household scale. Env. Model. Soc. 93, 366–380 (2017).

  75. 75.

    Perrone, D. & Hornberger, G. Frontiers of the food-energy-water trilemma: Sri Lanka as a microcosm of tradeoffs. Env. Res. Lett. 11, 014005 (2016).

  76. 76.

    Ravi, S. et al. Colocation opportunities for large solar infrastructures and agriculture in drylands. Appl. Energy 165, 383–392 (2016).

  77. 77.

    Research for global sustainability. Future Earth (2016).

  78. 78.

    Howarth, C. & Monasterolo, I. Understanding barriers to decision making in the UK energy-food-water nexus: The added value of interdisciplinary approaches. Env. Sci. Pol. 61, 53–60 (2016).

  79. 79.

    Endo, A., Tsurita, I., Burnett, K. & Orencio, P. M. A review of the current state of research on the water, energy, and food nexus. J. Hydrol. Region. Stud. 11, 20–30 (2015).

  80. 80.

    Johnson, O. W. & Karlberg, L. Co-exploring the water-energy-food nexus: facilitating dialogue through participatory scenario building. Front. Env. Sci. 5, 24 (2017).

  81. 81.

    Beck, M. B. & Walker, R. V. On water security, sustainability, and the water-food-energy-climate nexus. Front. Env. Sci. Eng. 7, 626–639 (2013).

  82. 82.

    Mann, M. E. & Gleick, P. H. Climate change and California drought in the 21st century. Proc. Natl Acad. Sci. USA 112, 3858–3859 (2015).

  83. 83.

    Fulton, J. & Cooley, H. The water footprint of California’s energy system, 1990–2012. Environ. Sci. Technol. 49, 3314–3321 (2015).

  84. 84.

    Leck, H., Conway, D., Bradshaw, M. & Rees, J. Tracing the water-energy-food nexus: description, theory and practice. Geogr. Compass 9, 445–460 (2015).

  85. 85.

    Liu, J. Integration across a metacoupled planet. Ecol. Soc. 22, 29 (2017).

  86. 86.

    Liu, J. et al. Framing sustainability in a telecoupled world. Ecol. Soc. 18, 26 (2013).

  87. 87.

    Meadows, D., Randers, J. & Meadows, D. Limits to Growth: the 30-year Update (Chelsea Green Publishing Company, White River Junction, VT, 2004).

  88. 88.

    Nilsson, M., Griggs, D. & Visbeck, M. Map the interactions between sustainable development goals: Mans Nilsson, Dave Griggs and Martin Visbeck present a simple way of rating relationships between the targets to highlight priorities for integrated policy. Nature 534, 320–323 (2016).

  89. 89.

    Mohtar, R. The Importance of the Water-Energy-Food Nexus in the Implementation of the Sustainable Development Goals (SDGs) (OCP Policy Center, 2016).

  90. 90.

    Rosa, E. A. & Dietz, T. Human drivers of national greenhouse-gas emissions. Nat. Clim. Change 2, 581–586 (2012).

  91. 91.

    Tilman, D. et al. Forecasting agriculturally driven global environmental change. Science 292, 281–284 (2001).

  92. 92.

    Stern, P. C. Individual and household interactions with energy systems: toward integrated understanding. Energy Res. Social Sci. 1, 41–48 (2014).

  93. 93.

    Jones, C. & Kammen, D. M. Spatial distribution of US household carbon footprints reveals suburbanization undermines greenhouse gas benefits of urban population density. Environ. Sci. Technol. 48, 895–902 (2014).

  94. 94.

    Liu, J., Daily, G. C., Ehrlich, P. R. & Luck, G. W. Effects of household dynamics on resource consumption and biodiversity. Nature 421, 530–533 (2003).

  95. 95.

    Tilman, D., Balzer, C., Hill, J. & Befort, B. L. Global food demand and the sustainable intensification of agriculture. Proc. Natl Acad. Sci. USA 108, 20260–20264 (2011).

  96. 96.

    Carletto, C., Zezza, A. & Banerjee, R. Towards better measurement of household food security: Harmonizing indicators and the role of household surveys. Glob. Food Secur. 2, 30–40 (2013).

  97. 97.

    Jorgensen, B. S., Martin, J. F., Pearce, M. W. & Willis, E. M. Predicting household water consumption with individual-level variables. Env. Behav. 7, 872–897 (2013).

  98. 98.

    Kwac, J., Flora, J. & Rajagopal, R. Household energy consumption segmentation using hourly data. IEEE Trans. Smart Grid 5, 420–430 (2014).

  99. 99.

    Lubchenco, J., Cerny-Chipman, E. B., Reimer, J. N. & Levin, S. A. The right incentives enable ocean sustainability successes and provide hope for the future. Proc. Natl Acad. Sci. USA 113, 14507–14514 (2016).

  100. 100.

    Elimelech, M. & Phillip, W. A. The future of seawater desalination: energy, technology, and the environment. Science 333, 712–717 (2011).

  101. 101.

    Pauly, D., Watson, R. & Alder, J. Global trends in world fisheries: impacts on marine ecosystems and food security. Phil. Trans. R. Soc. B 360, 5–12 (2005).

  102. 102.

    Bakke, T., Klungsøyr, J. & Sanni, S. Environmental impacts of produced water and drilling waste discharges from the Norwegian offshore petroleum industry. Mar. Environ. Res. 92, 154–169 (2013).

  103. 103.

    Boissy, J. et al. Environmental impacts of plant-based salmonid diets at feed and farm scales. Aquaculture 321, 61–70 (2011).

  104. 104.

    Troell, M. et al. Does aquaculture add resilience to the global food system? Proc. Natl Acad. Sci. USA 111, 13257–13263 (2014).

  105. 105.

    Napier, J. A., Usher, S., Haslam, R. P., Ruiz‐Lopez, N. & Sayanova, O. Transgenic plants as a sustainable, terrestrial source of fish oils. Eur. J. Lipid Sci. Technol. 117, 1317–1324 (2015).

  106. 106.

    Børresen, T. Blue growth opportunities in sustainable marine and maritime sectors. J. Aquat. Food Prod. Technol. 22, 217–218 (2013).

  107. 107.

    Middleton, C., Allouche, J., Gyawali, D. & Allen, S. The rise and implications of the water-energy-food nexus in Southeast Asia through an environmental justice lens. Water Altern. 8, Art8-1-2 (2015).

  108. 108.

    Villamayor-Tomas, S., Grundmann, P., Epstein, G., Evans, T. & Kimmich, C. The water-energy-food security nexus through the lenses of the value chain and IAD frameworks. Water Altern. 8, Art8-1-7 (2015).

  109. 109.

    Ferroukhi, R. et al. Renewable Energy in the Water, Energy, and Food Nexus (International Renewable Energy Agency Policy Unit, 2015).

  110. 110.

    Al-Ansari, T., Korre, A., Nie, Z. & Shah, N. Development of a life cycle assessment tool for the assessment of food production systems within the energy, water and food nexus. Sustain. Prod. Consum. 2, 52–66 (2015).

  111. 111.

    Häyhä, T., Lucas, P. L., van Vuuren, D. P., Cornell, S. E. & Hoff, H. From planetary boundaries to national fair shares of the global safe operating space-how can the scales be bridged? Global Environ. Change 40, 60–72 (2016).

  112. 112.

    Sharmina, M. et al. A nexus perspective on competing land demands: wider lessons from a UK policy case study. Env. Sci. Pol. 59, 74–84 (2016).

  113. 113.

    GEOSS: group on earth observations. GEO (2016).

  114. 114.

    Kriegler, E. et al. The need for and use of socio-economic scenarios for climate change analysis: a new approach based on shared socio-economic pathways. Glob. Environ. Change 22, 807–822 (2012).

  115. 115.

    Giupponi, C. & Gain, A. K. Integrated spatial assessment of the water, energy and food dimensions of the sustainable development goals. Region. Env. Change 17, 1881–1893 (2016).

  116. 116.

    Gleick, P. H., Christian-Smith, J. & Cooley, H. Water-use efficiency and productivity: rethinking the basin approach. Water Int. 36, 784–798 (2011).

  117. 117.

    Mohtar, R. H. & Daher, B. Water-energy-food nexus framework for facilitating multi-stakeholder dialogue. Water Int. 41, 655–661 (2015).

  118. 118.

    Davis, S. C. et al. Closing the loop: integrative systems management of waste in food, energy, and water systems. J. Env. Stud. Sci. 6, 11–24 (2016).

  119. 119.

    Kline, K. L. et al. Reconciling Food Security and Bioenergy: Priorities For Action (GCB Bioenergy, 2016).

  120. 120.

    Halbe, J., Pahl-Wostl, C., A. Lange, M. & Velonis, C. Governance of transitions towards sustainable development-the water-energy-food nexus in Cyprus. Water Int. 40, 877–894 (2015).

  121. 121.

    Pahl-Wostl, C. Water Governance in the Face of Global Change: From Understanding to Transformation (Springer, Cham, 2015).

  122. 122.

    Rasul, G. Managing the food, water, and energy nexus for achieving the Sustainable Development Goals in South Asia. Env. Dev. 18, 14–25 (2016).

  123. 123.

    Pahl-Wostl, C. Governance of the water-energy-food security nexus: A multi-level coordination challenge. Env. Sci. Pol. (2017).

  124. 124.

    Griggs, D., Nilsson, M., Stevance, A. & McCollum, D. (eds.) A Guide to SDG Interactions: From Science to Implementation (International Council for Science, 2017).

  125. 125.

    Sachs, J., Schmidt-Traub, G., Kroll, C., Durand-Delacre, D. & Teksoz, K. SDG Index and Dashboards Report 2017 (Bertelsmann Stiftung and Sustainable Development Solutions Network, 2017).

  126. 126.

    Liu, J. An integrated framework for achieving Sustainable Development Goals around the world. Ecol. Econ. Soc. 1, 11–17 (2018).

  127. 127.

    Mainali, B., Luukkanen, J., Silveira, S. & Kaivo-oja, J. Evaluating synergies and trade-offs among Sustainable Development Goals (SDGs): explorative analyses of development paths in South Asia and sub-Saharan Africa. Sustainability 10, 815 (2018).

  128. 128.

    Salah, A. H., Hassan, G. E., Fath, H., Elhelw, M. & Elsherbiny, S. Analytical investigation of different operational scenarios of a novel greenhouse combined with solar stills. Appl. Thermal Eng. 122, 297–310 (2017).

  129. 129.

    Sachs, I. & Silk, D. Food and Energy: Strategies for Sustainable Development (United Nations Univ. Press, Tokyo, 1990).

  130. 130.

    Tuninetti, M., Tamea, S., Laio, F. & Ridolfi, L. A fast-track approach to deal with the temporal dimension of crop water footprint. Env. Res. Lett. 12, 074010 (2017).

  131. 131.

    Ishimatsu, T., Doufene, A., Alawad, A. & de Weck, O. Desalination network model driven decision support system: a case study of Saudi Arabia. Desalination 423, 65–78 (2017).

  132. 132.

    Cowan, W. N., Chang, T., Inglesi-Lotz, R. & Gupta, R. The nexus of electricity consumption, economic growth and CO2 emissions in the BRICS countries. Energy Pol. 66, 359–368 (2014).

  133. 133.

    Kılkış, Ş. & Kılkış, B. Integrated circular economy and education model to address aspects of an energy-water-food nexus in a dairy facility and local contexts. J. Cleaner Prod. 167, 1084–1098 (2017).

  134. 134.

    Zhang, Y. Accelerating sustainability by hydropower development in China: the story of HydroLancang. Sustainability 9, 1305 (2017).

  135. 135.

    Oyanedel-Craver, V. et al. Women-water nexus for sustainable global water resources. J. Water Res. Plan. Man. 143, 01817001 (2017).

  136. 136.

    Casillas, C. E. & Kammen, D. M. The energy-poverty-climate nexus. Science 330, 1181–1182 (2010).

  137. 137.

    Miller-Robbie, L., Ramaswami, A. & Amerasinghe, P. Wastewater treatment and reuse in urban agriculture: exploring the food, energy, water, and health nexus in Hyderabad, India. Env. Res. Lett. 12, 075005 (2017).

  138. 138.

    LaVanchy, G. T. When wells run dry: water and tourism in Nicaragua. Ann. Tourism Res. 64, 37–50 (2017).

  139. 139.

    Glamann, J., Hanspach, J., Abson, D. J., Collier, N. & Fischer, J. The intersection of food security and biodiversity conservation: a review. Regional Env. Change 17, 1303–1313 (2017).

  140. 140.

    Marston, A. J. Alloyed waterscapes: mining and water at the nexus of corporate social responsibility, resource nationalism, and small‐scale mining. Wiley Interdisc. Rev. Water 4, e1175 (2017).

  141. 141.

    Alba, R., Bolding, A. & Ducrot, R. The politics of water payments and stakeholder participation in the Limpopo River Basin, Mozambique. Water Altern. 9, 569 (2016).

  142. 142.

    Lotz-Sisitka, H. et al. Co-designing research on transgressive learning in times of climate change. Curr. Opin. Env. Sustain. 20, 50–55 (2016).

  143. 143.

    Quezada, G., Walton, A. & Sharma, A. Risks and tensions in water industry innovation: understanding adoption of decentralised water systems from a socio-technical transitions perspective. J. Cleaner Prod. 113, 263–273 (2016).

  144. 144.

    Sebri, M. Use renewables to be cleaner: meta-analysis of the renewable energy consumption–economic growth nexus. Renew. Sustain. Energy Rev. 42, 657–665 (2015).

  145. 145.

    Yang, Y. J. & Goodrich, J. A. Toward quantitative analysis of water-energy-urban-climate nexus for urban adaptation planning. Curr. Opinion Chem. Eng. 5, 22–28 (2014).

  146. 146.

    Keskinen, M., Someth, P., Salmivaara, A. & Kummu, M. Water-energy-food nexus in a transboundary river basin: the case of Tonle Sap Lake, Mekong River Basin. Water 7, 5416–5436 (2015).

  147. 147.

    Shrestha, S., Adhikari, S., Babel, M. S., Perret, S. R. & Dhakal, S. Evaluation of groundwater-based irrigation systems using a water-energy-food nexus approach: a case study from Southeast Nepal. J. Appl. Water Eng. Res. 3, 53–66 (2015).

  148. 148.

    Vlotman, W. F. & Ballard, C. Water, food and energy supply chains for a green economy. Irrig. Drain. 63, 232–240 (2014).

  149. 149.

    Zimmerman, R., Zhu, Q. & Dimitri, C. Promoting resilience for food, energy, and water interdependencies. J. Env. Stud. Sci. 6, 50–61 (2016).

  150. 150.

    Ng, T. L., Eheart, J. W., Cai, X. & Braden, J. B. An agent-based model of farmer decision-making and water quality impacts at the watershed scale under markets for carbon allowances and a second-generation biofuel crop. Water Resour. Res. 47, W09519 (2011).

Download references


Funding from the US National Science Foundation and Michigan AgBioResearch is gratefully acknowledged.

Author information

All authors wrote and commented on the manuscript.

Competing interests

The authors declare no competing interests.

Correspondence to Jianguo Liu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Further reading

Fig. 1: Impacts of nexus approaches on SDGs.
Fig. 2: Five major steps involved in implementing nexus approaches.
Fig. 3: Conceptual framework of nexus approaches (using the food–energy–water nexus as an example) across metacoupled human and natural systems.