Nexus approaches to global sustainable development

Abstract

Many global challenges, though interconnected, have been addressed singly, at times reducing one problem while exacerbating others. Nexus approaches simultaneously examine interactions among multiple sectors. Recent quantitative studies have revealed that nexus approaches can uncover synergies and detect trade-offs among sectors. If well implemented, nexus approaches have the potential to reduce negative surprises and promote integrated planning, management and governance. However, application and implementation of nexus approaches are in their infancy. No studies have explicitly quantified the contributions of nexus approaches to progress toward meeting the Sustainable Development Goals. To further implement nexus approaches and realize their potential, we propose a systematic procedure and provide perspectives on future directions. These include expanding nexus frameworks that consider interactions among more sectors, across scales, between adjacent and distant places, and linkages with Sustainable Development Goals; incorporating overlooked drivers and regions; diversifying nexus toolboxes; and making these strategies central in policy-making and governance for integrated Sustainable Development Goal implementation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Impacts of nexus approaches on SDGs.
Fig. 2: Five major steps involved in implementing nexus approaches.
Fig. 3: Conceptual framework of nexus approaches (using the food–energy–water nexus as an example) across metacoupled human and natural systems.

References

  1. 1.

    Liu, J. et al. Systems integration for global sustainability. Science 347, 1258832 (2015).

    Article  CAS  Google Scholar 

  2. 2.

    IPCC Climate Change 2014: Synthesis Report (eds Core Writing Team, Pachauri, R. K. & Meyer L. A.) (IPCC, 2015).

  3. 3.

    The sustainable development agenda. United Nations http://www.un.org/sustainabledevelopment/development-agenda/ (2016).

  4. 4.

    Rockström, J. Future Earth. Science 351, 319–319 (2016).

    Article  Google Scholar 

  5. 5.

    Jin, Q., Wei, J., Yang, Z.-L. & Lin, P. Irrigation-induced environmental changes around the Aral Sea: An integrated view from multiple satellite observations. Remote Sensing 9, 900 (2017).

    Article  Google Scholar 

  6. 6.

    Micklin, P. The Aral sea disaster. Annu. Rev. Earth Planet. Sci. 35, 47–72 (2007).

    CAS  Article  Google Scholar 

  7. 7.

    Daily, G. Nature’s Services: Societal Dependence On Natural Ecosystems (Island Press, Washington DC, 1997).

  8. 8.

    Costanza, R. et al. Changes in the global value of ecosystem services. Global Environ. Change 26, 152–158 (2014).

    Article  Google Scholar 

  9. 9.

    Hoekstra, A. Y. & Wiedmann, T. O. Humanity’s unsustainable environmental footprint. Science 344, 1114–1117 (2014).

    CAS  Article  Google Scholar 

  10. 10.

    Steffen, W. et al. Planetary boundaries: guiding human development on a changing planet. Science 347, 1259855 (2015).

    Article  CAS  Google Scholar 

  11. 11.

    Biswas, A. K. Integrated water resources management: Is it working? Int. J. Water Resour. Dev. 24, 5–22 (2008).

    Article  Google Scholar 

  12. 12.

    Sayer, J. et al. Ten principles for a landscape approach to reconciling agriculture, conservation, and other competing land uses. Proc. Natl Acad. Sci. USA 110, 8349–8356 (2013).

    CAS  Article  Google Scholar 

  13. 13.

    Botey, A. P., Garvin, T. & Szostak, R. Interdisciplinary research for ecosystem management. Ecosystems 17, 512–521 (2014).

    Article  Google Scholar 

  14. 14.

    Stein, C. et al. Advancing the Water-Energy-Food Nexus: Social Networks and Institutional Interplay in the Blue Nile Report 9290907991 (CGIAR Research Program on Water, Land and Ecosystems, 2014).

  15. 15.

    De Laurentiis, V., Hunt, V. D. & Rogers, D. C. Overcoming food security challenges within an energy/water/food nexus (EWFN) approach. Sustainability 8, 95 (2016).

    Article  Google Scholar 

  16. 16.

    Scott, C. A., Kurian, M. & Wescoat, J. L. Jr in Governing the Nexus (eds. Kurian, M. & Ardakanian, R.) 15–38 (Springer, Cham, 2015).

  17. 17.

    Wichelns, D. The water-energy-food nexus: Is the increasing attention warranted, from either a research or policy perspective? Env. Sci. Pol. 69, 113–123 (2017).

    Article  Google Scholar 

  18. 18.

    Cairns, R. & Krzywoszynska, A. Anatomy of a buzzword: the emergence of ‘the water-energy-food nexus’ in UK natural resource debates. Env. Sci. Pol. 64, 164–170 (2016).

    Article  Google Scholar 

  19. 19.

    Li, X., Feng, K., Siu, Y. L. & Hubacek, K. Energy-water nexus of wind power in China: the balancing act between CO2 emissions and water consumption. Energy Pol. 45, 440–448 (2012).

    Article  Google Scholar 

  20. 20.

    Amón, R., Maulhardt, M., Wong, T., Kazama, D. & Simmons, C. W. Waste heat and water recovery opportunities in California tomato paste processing. Appl. Thermal Eng. 78, 525–532 (2015).

    Article  Google Scholar 

  21. 21.

    Development and globalization: facts and figures. UN http://stats.unctad.org/Dgff2016/partnership/goal17/target_17_14.html (2016).

  22. 22.

    Ringler, C., Bhaduri, A. & Lawford, R. The nexus across water, energy, land and food (WELF): potential for improved resource use efficiency? Curr. Opin. Env. Sustain. 5, 617–624 (2013).

    Article  Google Scholar 

  23. 23.

    Progress on Sanitation and Drinking Water: 2015 Update and MDG Assessment (WHO, UNICEP, 2015).

  24. 24.

    Hunger statistics. WFP https://www.wfp.org/hunger/stats (2016).

  25. 25.

    World Energy Outlook 2015 (International Energy Agency, 2015).

  26. 26.

    Walker, R. V., Beck, M. B., Hall, J. W., Dawson, R. J. & Heidrich, O. The energy-water-food nexus: strategic analysis of technologies for transforming the urban metabolism. J. Env. Manag. 141, 104–115 (2014).

    Article  Google Scholar 

  27. 27.

    Hawkesford, M. J. Reducing the reliance on nitrogen fertilizer for wheat production. J. Cereal Sci. 59, 276–283 (2014).

    CAS  Article  Google Scholar 

  28. 28.

    Daher, B. T. & Mohtar, R. H. Water-energy-food (WEF) nexus tool 2.0: guiding integrative resource planning and decision-making. Water Int. 40, 748–771 (2015).

    Article  Google Scholar 

  29. 29.

    Daccache, A., Ciurana, J. S., Diaz, J. A. R. & Knox, J. W. Water and energy footprint of irrigated agriculture in the Mediterranean region. Env. Res. Lett. 9, 124014 (2014).

    Article  Google Scholar 

  30. 30.

    Ozkan, B., Akcaoz, H. & Karadeniz, F. Energy requirement and economic analysis of citrus production in Turkey. Energy Conv. Manag. 45, 1821–1830 (2004).

    Article  Google Scholar 

  31. 31.

    Rinaldi, M., Losavio, N. & Flagella, Z. Evaluation and application of the OILCROP–SUN model for sunflower in southern Italy. Agricult. Syst. 78, 17–30 (2003).

    Article  Google Scholar 

  32. 32.

    Hatfield-Dodds, S. et al. Australia is ‘free to choose’ economic growth and falling environmental pressures. Nature 527, 49–53 (2015).

    CAS  Article  Google Scholar 

  33. 33.

    Jeswani, H. K., Burkinshaw, R. & Azapagic, A. Environmental sustainability issues in the food-energy-water nexus: breakfast cereals and snacks. Sust. Prod. Consump. 2, 17–28 (2015).

    Google Scholar 

  34. 34.

    Rasul, G. Food, water, and energy security in South Asia: a nexus perspective from the Hindu Kush Himalayan region. Env. Sci. Pol. 39, 35–48 (2014).

    Article  Google Scholar 

  35. 35.

    Lane, J. Biofuel targets around the world: 2016 Biofuels Digest http://www.biofuelsdigest.com/bdigest/2016/01/03/biofuels-mandates-around-the-world-2016/ (2016).

  36. 36.

    Vlachogianni, T. & Valavanidis, A. Energy and environmental impact on the biosphere energy flow, storage and conversion in human civilization. Am. J. Educ. Res. 1, 68–78 (2013).

    Article  Google Scholar 

  37. 37.

    Hoff, H. Understanding the Nexus (Bonn2011 Nexus Conference, 2011).

  38. 38.

    Searchinger, T., Edwards, R., Mulligan, D., Heimlich, R. & Plevin, R. Do biofuel policies seek to cut emissions by cutting food? Science 347, 1420–1422 (2015).

    CAS  Article  Google Scholar 

  39. 39.

    Searchinger, T. et al. Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319, 1238–1240 (2008).

    CAS  Article  Google Scholar 

  40. 40.

    Francis, G., Edinger, R. & Becker, K. A concept for simultaneous wasteland reclamation, fuel production, and socio‐economic development in degraded areas in India: Need, potential and perspectives of Jatropha plantations. Nat. Resour. Forum 29, 12–24 (2005).

    Article  Google Scholar 

  41. 41.

    Ross, A. & Connell, D. The evolution and performance of river basin management in the Murray-Darling Basin. Ecol. Soc. 21, 39 (2016).

    Article  Google Scholar 

  42. 42.

    Zarfl, C., Lumsdon, A. E., Berlekamp, J., Tydecks, L. & Tockner, K. A global boom in hydropower dam construction. Aquat. Sci. 77, 161–170 (2015).

    Article  Google Scholar 

  43. 43.

    Yang, Y. E., Wi, S., Ray, P. A., Brown, C. M. & Khalil, A. F. The future nexus of the Brahmaputra River Basin: climate, water, energy and food trajectories. Global Environ. Change 37, 16–30 (2016).

    CAS  Article  Google Scholar 

  44. 44.

    Liu, J. & Yang, W. Water sustainability for China and beyond. Science 337, 649–650 (2012).

    CAS  Article  Google Scholar 

  45. 45.

    Rasul, G. Water for growth and development in the Ganges, Brahmaputra, and Meghna basins: an economic perspective. Int. J. River Basin Manag. 13, 387–400 (2015).

    Article  Google Scholar 

  46. 46.

    Rasul, G. Why Eastern Himalayan countries should cooperate in transboundary water resource management. Water Pol. 16, 19–38 (2014).

    Article  Google Scholar 

  47. 47.

    Kraucunas, I. et al. Investigating the nexus of climate, energy, water, and land at decision-relevant scales: the Platform for Regional Integrated Modeling and Analysis (PRIMA). Clim. Change 129, 573–588 (2015).

    Article  Google Scholar 

  48. 48.

    Bartos, M. D. & Chester, M. V. The conservation nexus: valuing interdependent water and energy savings in Arizona. Env. Sci. Technol. 48, 2139–2149 (2014).

    CAS  Article  Google Scholar 

  49. 49.

    de Strasser, L., Lipponen, A., Howells, M., Stec, S. & Bréthaut, C. A methodology to assess the water energy food ecosystems nexus in transboundary river basins. Water 8, 59 (2016).

    Article  Google Scholar 

  50. 50.

    Water Security: the Water-Food-Energy-Climate Nexus (World Economic Forum Water Initiative, Island Press, Washington DC, 2012).

  51. 51.

    Mukuve, F. M. & Fenner, R. A. Scale variability of water, land, and energy resource interactions and their influence on the food system in Uganda. Sust. Prod. Consum. 2, 79–95 (2015).

    Google Scholar 

  52. 52.

    Tilman, D. & Clark, M. Global diets link environmental sustainability and human health. Nature 515, 518–522 (2014).

    CAS  Article  Google Scholar 

  53. 53.

    Hussey, K. & Pittock, J. The energy-water nexus: managing the links between energy and water for a sustainable future. Ecol. Soc. 17, 31 (2012).

    Article  Google Scholar 

  54. 54.

    Howarth, C. & Monasterolo, I. Opportunities for knowledge co-production across the energy-food-water nexus: Making interdisciplinary approaches work for better climate decision making. Env. Sci. Pol. 75, 103–110 (2017).

    Article  Google Scholar 

  55. 55.

    Conway, D. et al. Climate and southern Africa’s water-energy-food nexus. Nat. Clim. Change 5, 837–846 (2015).

    Article  Google Scholar 

  56. 56.

    Ozturk, I. Sustainability in the food-energy-water nexus: evidence from BRICS (Brazil, the Russian Federation, India, China, and South Africa) countries. Energy 93, 999–1010 (2015).

    Article  Google Scholar 

  57. 57.

    Topi, C., Esposto, E. & Govigli, V. M. The economics of green transition strategies for cities: can low carbon, energy efficient development approaches be adapted to demand side urban water efficiency? Env. Sci. Pol. 58, 74–82 (2016).

    Article  Google Scholar 

  58. 58.

    Manthrithilake, H. & Liyanagama, B. S. Simulation model for participatory decision making: water allocation policy implementation in Sri Lanka. Water Int. 37, 478–491 (2012).

    Article  Google Scholar 

  59. 59.

    Endo, A. et al. Methods of the water-energy-food nexus. Water 7, 5806–5830 (2015).

    Article  Google Scholar 

  60. 60.

    Flammini, A., Puri, M., Pluschke, L. & Dubois, O. Walking the Nexus Talk: Assessing the Water-Energy-Food Nexus in the Context of the Sustainable Energy for All Initiative (FAO, 2017).

  61. 61.

    Weitz, N., Carlsen, H., Nilsson, M. & Skånberg, K. Towards systemic and contextual priority setting for implementing the 2030 Agenda. Sustain. Sci. 13, 531–548 (2018).

    Article  Google Scholar 

  62. 62.

    Pahl-Wostl, C. Governance of the water-energy-food security nexus: A multi-level coordination challenge. Env. Sci. Pol. https://doi.org/10.1016/j.envsci.2017.07.017 (2017).

  63. 63.

    El Gafy, I., Grigg, N. & Reagan, W. Dynamic behaviour of the water-food-energy nexus: focus on crop production and consumption. Irrig. Drain. 66, 19–33 (2017).

    Article  Google Scholar 

  64. 64.

    Lawford, R. et al. Basin perspectives on the water-energy-food security nexus. Curr. Opin. Env. Sustain. 5, 607–616 (2013).

    Article  Google Scholar 

  65. 65.

    El Gafy, I., Grigg, N. & Reagan, W. Water-food-energy nexus index to maximize the economic water and energy productivity in an optimal cropping pattern. Water Int. 42, 495–503 (2017).

    Article  Google Scholar 

  66. 66.

    Karnib, A. A Quantitative nexus approach to analyze the interlinkages across the sustainable development goals. J. Sustain. Dev. 10, 173 (2017).

    Article  Google Scholar 

  67. 67.

    Bleischwitz, R., Hoff, H., Spataru, C., van der Voet, E. & VanDeveer, S. D. Routledge Handbook of the Resource Nexus (Routledge, London, 2018).

    Google Scholar 

  68. 68.

    Welsch, M. et al. Adding value with CLEWS-modelling the energy system and its interdependencies for Mauritius. Appl. Energy 113, 1434–1445 (2014).

    Article  Google Scholar 

  69. 69.

    Fasel, M., Brethaut, C., Rouholahnejad, E., Lacayo-Emery, M. A. & Lehmann, A. Blue water scarcity in the Black Sea catchment: Identifying key actors in the water-ecosystem-energy-food nexus. Env. Sci. Pol. 66, 140–150 (2016).

    Article  Google Scholar 

  70. 70.

    Mortensen, J. G. et al. Advancing the food-energy-water nexus: closing nutrient loops in arid river corridors. Env. Sci. Technol. 50, 8485–8496 (2016).

    CAS  Article  Google Scholar 

  71. 71.

    Vora, N., Shah, A., Bilec, M. M. & Khanna, V. Food-energy-water nexus: quantifying embodied energy and GHG emissions from irrigation through virtual water transfers in food trade. ACS Sustain. Chem. Eng. 5, 2119–2128 (2017).

    CAS  Article  Google Scholar 

  72. 72.

    Wicaksono, A., Jeong, G. & Kang, D. Water, energy, and food nexus: review of global implementation and simulation model development. Water Pol. 19, 440–462 (2017).

    Article  Google Scholar 

  73. 73.

    Dhaubanjar, S., Davidsen, C. & Bauer-Gottwein, P. Multi-objective optimization for analysis of changing trade-offs in the Nepalese water-energy-food nexus with hydropower development. Water 9, 162 (2017).

    Article  Google Scholar 

  74. 74.

    Hussien, W. E. A., Memon, F. A. & Savic, D. A. An integrated model to evaluate water-energy-food nexus at a household scale. Env. Model. Soc. 93, 366–380 (2017).

    Article  Google Scholar 

  75. 75.

    Perrone, D. & Hornberger, G. Frontiers of the food-energy-water trilemma: Sri Lanka as a microcosm of tradeoffs. Env. Res. Lett. 11, 014005 (2016).

    Article  Google Scholar 

  76. 76.

    Ravi, S. et al. Colocation opportunities for large solar infrastructures and agriculture in drylands. Appl. Energy 165, 383–392 (2016).

    Article  Google Scholar 

  77. 77.

    Research for global sustainability. Future Earth http://www.futureearth.org (2016).

  78. 78.

    Howarth, C. & Monasterolo, I. Understanding barriers to decision making in the UK energy-food-water nexus: The added value of interdisciplinary approaches. Env. Sci. Pol. 61, 53–60 (2016).

    Article  Google Scholar 

  79. 79.

    Endo, A., Tsurita, I., Burnett, K. & Orencio, P. M. A review of the current state of research on the water, energy, and food nexus. J. Hydrol. Region. Stud. 11, 20–30 (2015).

    Article  Google Scholar 

  80. 80.

    Johnson, O. W. & Karlberg, L. Co-exploring the water-energy-food nexus: facilitating dialogue through participatory scenario building. Front. Env. Sci. 5, 24 (2017).

    Article  Google Scholar 

  81. 81.

    Beck, M. B. & Walker, R. V. On water security, sustainability, and the water-food-energy-climate nexus. Front. Env. Sci. Eng. 7, 626–639 (2013).

    Article  Google Scholar 

  82. 82.

    Mann, M. E. & Gleick, P. H. Climate change and California drought in the 21st century. Proc. Natl Acad. Sci. USA 112, 3858–3859 (2015).

    CAS  Article  Google Scholar 

  83. 83.

    Fulton, J. & Cooley, H. The water footprint of California’s energy system, 1990–2012. Environ. Sci. Technol. 49, 3314–3321 (2015).

    CAS  Article  Google Scholar 

  84. 84.

    Leck, H., Conway, D., Bradshaw, M. & Rees, J. Tracing the water-energy-food nexus: description, theory and practice. Geogr. Compass 9, 445–460 (2015).

    Article  Google Scholar 

  85. 85.

    Liu, J. Integration across a metacoupled planet. Ecol. Soc. 22, 29 (2017).

    Article  Google Scholar 

  86. 86.

    Liu, J. et al. Framing sustainability in a telecoupled world. Ecol. Soc. 18, 26 (2013).

    CAS  Article  Google Scholar 

  87. 87.

    Meadows, D., Randers, J. & Meadows, D. Limits to Growth: the 30-year Update (Chelsea Green Publishing Company, White River Junction, VT, 2004).

  88. 88.

    Nilsson, M., Griggs, D. & Visbeck, M. Map the interactions between sustainable development goals: Mans Nilsson, Dave Griggs and Martin Visbeck present a simple way of rating relationships between the targets to highlight priorities for integrated policy. Nature 534, 320–323 (2016).

    Article  Google Scholar 

  89. 89.

    Mohtar, R. The Importance of the Water-Energy-Food Nexus in the Implementation of the Sustainable Development Goals (SDGs) (OCP Policy Center, 2016).

  90. 90.

    Rosa, E. A. & Dietz, T. Human drivers of national greenhouse-gas emissions. Nat. Clim. Change 2, 581–586 (2012).

    CAS  Article  Google Scholar 

  91. 91.

    Tilman, D. et al. Forecasting agriculturally driven global environmental change. Science 292, 281–284 (2001).

    CAS  Article  Google Scholar 

  92. 92.

    Stern, P. C. Individual and household interactions with energy systems: toward integrated understanding. Energy Res. Social Sci. 1, 41–48 (2014).

    Article  Google Scholar 

  93. 93.

    Jones, C. & Kammen, D. M. Spatial distribution of US household carbon footprints reveals suburbanization undermines greenhouse gas benefits of urban population density. Environ. Sci. Technol. 48, 895–902 (2014).

    CAS  Article  Google Scholar 

  94. 94.

    Liu, J., Daily, G. C., Ehrlich, P. R. & Luck, G. W. Effects of household dynamics on resource consumption and biodiversity. Nature 421, 530–533 (2003).

    CAS  Article  Google Scholar 

  95. 95.

    Tilman, D., Balzer, C., Hill, J. & Befort, B. L. Global food demand and the sustainable intensification of agriculture. Proc. Natl Acad. Sci. USA 108, 20260–20264 (2011).

    CAS  Article  Google Scholar 

  96. 96.

    Carletto, C., Zezza, A. & Banerjee, R. Towards better measurement of household food security: Harmonizing indicators and the role of household surveys. Glob. Food Secur. 2, 30–40 (2013).

    Article  Google Scholar 

  97. 97.

    Jorgensen, B. S., Martin, J. F., Pearce, M. W. & Willis, E. M. Predicting household water consumption with individual-level variables. Env. Behav. 7, 872–897 (2013).

    Google Scholar 

  98. 98.

    Kwac, J., Flora, J. & Rajagopal, R. Household energy consumption segmentation using hourly data. IEEE Trans. Smart Grid 5, 420–430 (2014).

    Article  Google Scholar 

  99. 99.

    Lubchenco, J., Cerny-Chipman, E. B., Reimer, J. N. & Levin, S. A. The right incentives enable ocean sustainability successes and provide hope for the future. Proc. Natl Acad. Sci. USA 113, 14507–14514 (2016).

    CAS  Article  Google Scholar 

  100. 100.

    Elimelech, M. & Phillip, W. A. The future of seawater desalination: energy, technology, and the environment. Science 333, 712–717 (2011).

    CAS  Article  Google Scholar 

  101. 101.

    Pauly, D., Watson, R. & Alder, J. Global trends in world fisheries: impacts on marine ecosystems and food security. Phil. Trans. R. Soc. B 360, 5–12 (2005).

    Article  Google Scholar 

  102. 102.

    Bakke, T., Klungsøyr, J. & Sanni, S. Environmental impacts of produced water and drilling waste discharges from the Norwegian offshore petroleum industry. Mar. Environ. Res. 92, 154–169 (2013).

    CAS  Article  Google Scholar 

  103. 103.

    Boissy, J. et al. Environmental impacts of plant-based salmonid diets at feed and farm scales. Aquaculture 321, 61–70 (2011).

    Article  Google Scholar 

  104. 104.

    Troell, M. et al. Does aquaculture add resilience to the global food system? Proc. Natl Acad. Sci. USA 111, 13257–13263 (2014).

    CAS  Article  Google Scholar 

  105. 105.

    Napier, J. A., Usher, S., Haslam, R. P., Ruiz‐Lopez, N. & Sayanova, O. Transgenic plants as a sustainable, terrestrial source of fish oils. Eur. J. Lipid Sci. Technol. 117, 1317–1324 (2015).

    CAS  Article  Google Scholar 

  106. 106.

    Børresen, T. Blue growth opportunities in sustainable marine and maritime sectors. J. Aquat. Food Prod. Technol. 22, 217–218 (2013).

    Article  Google Scholar 

  107. 107.

    Middleton, C., Allouche, J., Gyawali, D. & Allen, S. The rise and implications of the water-energy-food nexus in Southeast Asia through an environmental justice lens. Water Altern. 8, Art8-1-2 (2015).

    Google Scholar 

  108. 108.

    Villamayor-Tomas, S., Grundmann, P., Epstein, G., Evans, T. & Kimmich, C. The water-energy-food security nexus through the lenses of the value chain and IAD frameworks. Water Altern. 8, Art8-1-7 (2015).

    Google Scholar 

  109. 109.

    Ferroukhi, R. et al. Renewable Energy in the Water, Energy, and Food Nexus (International Renewable Energy Agency Policy Unit, 2015).

  110. 110.

    Al-Ansari, T., Korre, A., Nie, Z. & Shah, N. Development of a life cycle assessment tool for the assessment of food production systems within the energy, water and food nexus. Sustain. Prod. Consum. 2, 52–66 (2015).

    Article  Google Scholar 

  111. 111.

    Häyhä, T., Lucas, P. L., van Vuuren, D. P., Cornell, S. E. & Hoff, H. From planetary boundaries to national fair shares of the global safe operating space-how can the scales be bridged? Global Environ. Change 40, 60–72 (2016).

    Article  Google Scholar 

  112. 112.

    Sharmina, M. et al. A nexus perspective on competing land demands: wider lessons from a UK policy case study. Env. Sci. Pol. 59, 74–84 (2016).

    Article  Google Scholar 

  113. 113.

    GEOSS: group on earth observations. GEO http://www.earthobservations.org/geoss.php (2016).

  114. 114.

    Kriegler, E. et al. The need for and use of socio-economic scenarios for climate change analysis: a new approach based on shared socio-economic pathways. Glob. Environ. Change 22, 807–822 (2012).

    Article  Google Scholar 

  115. 115.

    Giupponi, C. & Gain, A. K. Integrated spatial assessment of the water, energy and food dimensions of the sustainable development goals. Region. Env. Change 17, 1881–1893 (2016).

    Article  Google Scholar 

  116. 116.

    Gleick, P. H., Christian-Smith, J. & Cooley, H. Water-use efficiency and productivity: rethinking the basin approach. Water Int. 36, 784–798 (2011).

    Article  Google Scholar 

  117. 117.

    Mohtar, R. H. & Daher, B. Water-energy-food nexus framework for facilitating multi-stakeholder dialogue. Water Int. 41, 655–661 (2015).

    Google Scholar 

  118. 118.

    Davis, S. C. et al. Closing the loop: integrative systems management of waste in food, energy, and water systems. J. Env. Stud. Sci. 6, 11–24 (2016).

    Article  Google Scholar 

  119. 119.

    Kline, K. L. et al. Reconciling Food Security and Bioenergy: Priorities For Action (GCB Bioenergy, 2016).

  120. 120.

    Halbe, J., Pahl-Wostl, C., A. Lange, M. & Velonis, C. Governance of transitions towards sustainable development-the water-energy-food nexus in Cyprus. Water Int. 40, 877–894 (2015).

    Article  Google Scholar 

  121. 121.

    Pahl-Wostl, C. Water Governance in the Face of Global Change: From Understanding to Transformation (Springer, Cham, 2015).

  122. 122.

    Rasul, G. Managing the food, water, and energy nexus for achieving the Sustainable Development Goals in South Asia. Env. Dev. 18, 14–25 (2016).

    Article  Google Scholar 

  123. 123.

    Pahl-Wostl, C. Governance of the water-energy-food security nexus: A multi-level coordination challenge. Env. Sci. Pol. https://doi.org/10.1016/j.envsci.2017.07.017 (2017).

  124. 124.

    Griggs, D., Nilsson, M., Stevance, A. & McCollum, D. (eds.) A Guide to SDG Interactions: From Science to Implementation (International Council for Science, 2017).

  125. 125.

    Sachs, J., Schmidt-Traub, G., Kroll, C., Durand-Delacre, D. & Teksoz, K. SDG Index and Dashboards Report 2017 (Bertelsmann Stiftung and Sustainable Development Solutions Network, 2017).

  126. 126.

    Liu, J. An integrated framework for achieving Sustainable Development Goals around the world. Ecol. Econ. Soc. 1, 11–17 (2018).

    Google Scholar 

  127. 127.

    Mainali, B., Luukkanen, J., Silveira, S. & Kaivo-oja, J. Evaluating synergies and trade-offs among Sustainable Development Goals (SDGs): explorative analyses of development paths in South Asia and sub-Saharan Africa. Sustainability 10, 815 (2018).

    Article  Google Scholar 

  128. 128.

    Salah, A. H., Hassan, G. E., Fath, H., Elhelw, M. & Elsherbiny, S. Analytical investigation of different operational scenarios of a novel greenhouse combined with solar stills. Appl. Thermal Eng. 122, 297–310 (2017).

    Article  Google Scholar 

  129. 129.

    Sachs, I. & Silk, D. Food and Energy: Strategies for Sustainable Development (United Nations Univ. Press, Tokyo, 1990).

  130. 130.

    Tuninetti, M., Tamea, S., Laio, F. & Ridolfi, L. A fast-track approach to deal with the temporal dimension of crop water footprint. Env. Res. Lett. 12, 074010 (2017).

    Article  Google Scholar 

  131. 131.

    Ishimatsu, T., Doufene, A., Alawad, A. & de Weck, O. Desalination network model driven decision support system: a case study of Saudi Arabia. Desalination 423, 65–78 (2017).

    CAS  Article  Google Scholar 

  132. 132.

    Cowan, W. N., Chang, T., Inglesi-Lotz, R. & Gupta, R. The nexus of electricity consumption, economic growth and CO2 emissions in the BRICS countries. Energy Pol. 66, 359–368 (2014).

    Article  Google Scholar 

  133. 133.

    Kılkış, Ş. & Kılkış, B. Integrated circular economy and education model to address aspects of an energy-water-food nexus in a dairy facility and local contexts. J. Cleaner Prod. 167, 1084–1098 (2017).

    Article  Google Scholar 

  134. 134.

    Zhang, Y. Accelerating sustainability by hydropower development in China: the story of HydroLancang. Sustainability 9, 1305 (2017).

    Article  Google Scholar 

  135. 135.

    Oyanedel-Craver, V. et al. Women-water nexus for sustainable global water resources. J. Water Res. Plan. Man. 143, 01817001 (2017).

    Article  Google Scholar 

  136. 136.

    Casillas, C. E. & Kammen, D. M. The energy-poverty-climate nexus. Science 330, 1181–1182 (2010).

    CAS  Article  Google Scholar 

  137. 137.

    Miller-Robbie, L., Ramaswami, A. & Amerasinghe, P. Wastewater treatment and reuse in urban agriculture: exploring the food, energy, water, and health nexus in Hyderabad, India. Env. Res. Lett. 12, 075005 (2017).

    Article  CAS  Google Scholar 

  138. 138.

    LaVanchy, G. T. When wells run dry: water and tourism in Nicaragua. Ann. Tourism Res. 64, 37–50 (2017).

    Article  Google Scholar 

  139. 139.

    Glamann, J., Hanspach, J., Abson, D. J., Collier, N. & Fischer, J. The intersection of food security and biodiversity conservation: a review. Regional Env. Change 17, 1303–1313 (2017).

    Article  Google Scholar 

  140. 140.

    Marston, A. J. Alloyed waterscapes: mining and water at the nexus of corporate social responsibility, resource nationalism, and small‐scale mining. Wiley Interdisc. Rev. Water 4, e1175 (2017).

    Article  Google Scholar 

  141. 141.

    Alba, R., Bolding, A. & Ducrot, R. The politics of water payments and stakeholder participation in the Limpopo River Basin, Mozambique. Water Altern. 9, 569 (2016).

    Google Scholar 

  142. 142.

    Lotz-Sisitka, H. et al. Co-designing research on transgressive learning in times of climate change. Curr. Opin. Env. Sustain. 20, 50–55 (2016).

    Article  Google Scholar 

  143. 143.

    Quezada, G., Walton, A. & Sharma, A. Risks and tensions in water industry innovation: understanding adoption of decentralised water systems from a socio-technical transitions perspective. J. Cleaner Prod. 113, 263–273 (2016).

    Article  Google Scholar 

  144. 144.

    Sebri, M. Use renewables to be cleaner: meta-analysis of the renewable energy consumption–economic growth nexus. Renew. Sustain. Energy Rev. 42, 657–665 (2015).

    Article  Google Scholar 

  145. 145.

    Yang, Y. J. & Goodrich, J. A. Toward quantitative analysis of water-energy-urban-climate nexus for urban adaptation planning. Curr. Opinion Chem. Eng. 5, 22–28 (2014).

    Article  Google Scholar 

  146. 146.

    Keskinen, M., Someth, P., Salmivaara, A. & Kummu, M. Water-energy-food nexus in a transboundary river basin: the case of Tonle Sap Lake, Mekong River Basin. Water 7, 5416–5436 (2015).

    Article  Google Scholar 

  147. 147.

    Shrestha, S., Adhikari, S., Babel, M. S., Perret, S. R. & Dhakal, S. Evaluation of groundwater-based irrigation systems using a water-energy-food nexus approach: a case study from Southeast Nepal. J. Appl. Water Eng. Res. 3, 53–66 (2015).

    Article  Google Scholar 

  148. 148.

    Vlotman, W. F. & Ballard, C. Water, food and energy supply chains for a green economy. Irrig. Drain. 63, 232–240 (2014).

    Article  Google Scholar 

  149. 149.

    Zimmerman, R., Zhu, Q. & Dimitri, C. Promoting resilience for food, energy, and water interdependencies. J. Env. Stud. Sci. 6, 50–61 (2016).

    Article  Google Scholar 

  150. 150.

    Ng, T. L., Eheart, J. W., Cai, X. & Braden, J. B. An agent-based model of farmer decision-making and water quality impacts at the watershed scale under markets for carbon allowances and a second-generation biofuel crop. Water Resour. Res. 47, W09519 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

Funding from the US National Science Foundation and Michigan AgBioResearch is gratefully acknowledged.

Author information

Affiliations

Authors

Contributions

All authors wrote and commented on the manuscript.

Corresponding author

Correspondence to Jianguo Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Hull, V., Godfray, H.C.J. et al. Nexus approaches to global sustainable development. Nat Sustain 1, 466–476 (2018). https://doi.org/10.1038/s41893-018-0135-8

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing