Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The challenge of feeding the world while conserving half the planet

Abstract

Amid widespread concerns about biodiversity loss, a single clear conservation message is engaging leading conservationists: the proposal to give half the surface of the Earth back to nature. Depending on the landscape conservation strategy, we find that, globally, 15–31% of cropland, 10–45% of pasture land, 23–25% of non-food calories and 3–29% of food calories from crops could be lost if half of Earth’s terrestrial ecoregions were given back to nature.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Feeding the world under a global deal for nature.
Fig. 2: Maps of calorie losses under each Half-Earth scenario.

References

  1. 1.

    Butchart, S. H. M. et al. Science 328, 1164–1168 (2010).

    Article  CAS  Google Scholar 

  2. 2.

    Strategic Plan for Biodiversity 2011–2020 and the Aichi Targets (Convention on Biological Diversity, 2011).

  3. 3.

    Butchart, S. H. M., Di Marco, M. & Watson, J. E. M. Conserv. Lett. 9, 457–468 (2016).

    Article  Google Scholar 

  4. 4.

    Wilson, E. Half-Earth: Our Planet’s Fight for Life (Liveright, New York, 2016).

  5. 5.

    Dinerstein, E. et al. Bioscience 67, 534–545 (2017).

    Article  Google Scholar 

  6. 6.

    Balmford, A. & Green, R. Nature 552, 175 (2017).

    Article  CAS  Google Scholar 

  7. 7.

    Watson, J. E. M. & Venter, O. Nature 550, 48–49 (2017).

    Article  CAS  Google Scholar 

  8. 8.

    Blanchard, J. L. et al. Nat. Ecol. Evol. 1, 1240–1249 (2017).

    Article  Google Scholar 

  9. 9.

    Naidoo, R. et al. Proc. Natl Acad. Sci. USA 105, 9495–9500 (2008).

    Article  Google Scholar 

  10. 10.

    Duran, A. P., Duffy, J. P. & Gaston, K. J. Proc. R. Soc. B 281, 20141529 (2014).

    Article  Google Scholar 

  11. 11.

    Noss, R. F. Bioscience 33, 700–706 (1983).

    Article  Google Scholar 

  12. 12.

    Phalan, B., Onial, M., Balmford, A. & Green, R. E. Science 333, 1289–1291 (2011).

    Article  CAS  Google Scholar 

  13. 13.

    FAOSTAT (Food and Agriculture Organization of the United Nations, 2016); http://www.fao.org/faostat/en/

  14. 14.

    Mueller, N. D. et al. Nature 490, 254–257 (2012).

    Article  CAS  Google Scholar 

  15. 15.

    Kummu, M. et al. Sci. Total Environ. 438, 477–489 (2012).

    Article  CAS  Google Scholar 

  16. 16.

    Cassidy, E. S. et al. Environ. Res. Lett. 8, 34015 (2013).

    Article  Google Scholar 

  17. 17.

    Díaz, S. et al. Science 359, 270–272 (2018).

    Article  Google Scholar 

  18. 18.

    Fairhead, J., Leach, M. & Scoones, I. J. Peasant Stud. 39, 237–261 (2012).

    Article  Google Scholar 

  19. 19.

    Laura Kehoe et al. Nat. Ecol. Evol. 1, 1129–1135 (2017).

    Article  Google Scholar 

  20. 20.

    Waldron, A. et al. Nature 551, 364–367 (2017).

    Article  CAS  Google Scholar 

  21. 21.

    Ramankutty, N. et al. Global Biogeochem. Cy. 22, 1–19 (2008).

    Article  CAS  Google Scholar 

  22. 22.

    Friedl, M. A. et al. Remote Sens. Environ. 114, 168–182 (2010).

    Article  Google Scholar 

  23. 23.

    The World Database on Protected Areas/The Global Database on Protected Areas Management Effectiveness (GD-PAME) (UNEP-WCMC & IUCN, 2017); www.protectedplanet.net

  24. 24.

    World Database of Key Biodiversity Areas (BirdLife, 2017); http://www.keybiodiversityareas.org/home

  25. 25.

    South, A. R J. 3, 35–43 (2011).

    Google Scholar 

  26. 26.

    Ramankutty, N. & Foley, J. A. Global Biogeochem. Cy. 13, 997–1027 (1999).

    Article  CAS  Google Scholar 

  27. 27.

    R Core Development Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2017).

Download references

Acknowledgements

This work was supported by a Natural Sciences and Engineering Research Council of Canada Discovery Grant and a Genome Canada/Genome BC grant (to N.R.).

Author information

Affiliations

Authors

Contributions

Z.M., E.C.E. and N.R. designed the analyses. Z.M. compiled the data and conducted the analyses. Z.M. wrote the paper with input from E.C.E. and N.R.

Corresponding author

Correspondence to Zia Mehrabi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1, 2, Supplementary Methods, Supplementary Figures 1–4, Supplementary References 1–24

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mehrabi, Z., Ellis, E.C. & Ramankutty, N. The challenge of feeding the world while conserving half the planet. Nat Sustain 1, 409–412 (2018). https://doi.org/10.1038/s41893-018-0119-8

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing