Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The structure of mental models of sustainable agriculture


Progress towards sustainability is hampered by differing perceptions of how to advance goals in systems characterized by massive interdependency. Systems thinking has been advocated as a model for improving understanding and management of complex systems, but theory and methods to analyse systems thinking are not well developed. We propose and apply a new way of assessing systems thinking using social network tools to analyse mental models. We examine the cognitive maps of 148 thought leaders in sustainable agriculture in California and measure the extent to which each map captures six fundamental causal patterns. We find that the more complex forms of causal structure that are associated with systems thinking are relatively under-represented in the experts’ maps. Our findings have important implications for individual and collective decision making about sustainable agriculture and other science and policy debates involving complex systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Distributions of the prevalance of causal motifs in cognitive maps relative to uniform random graphs.
Fig. 2: Cognitive maps clustered on the prevalence of microstructures relative to random graphs.
Fig. 3: Correlations across cognitive maps of motif-level CUG test results and network-level statistics.

Similar content being viewed by others


  1. Forrester, J. W. Counterintuitive behavior of social systems. Theory. Decis. 2, 109–140 (1971).

    Article  Google Scholar 

  2. Axelrod, R. (ed.) Structure of Decision: The Cognitive Maps of Political Elites (Princeton Univ. Press, Princeton, 1976).

  3. Gray, S. A., Zanre, E. & Gray, S. in Fuzzy Cognitive Maps for Applied Sciences and Engineering (ed. Papageorgiou, E. I.) 29–48 (Springer, Berlin and Heidelberg, 2014).

  4. Hoffman, M., Lubell, M. & Hillis, V. Linking knowledge and action through mental models of sustainable agriculture. Proc. Natl Acad. Sci. USA 111, 13016–13021 (2014).

    Article  CAS  Google Scholar 

  5. Cash, D. W. et al. Scale and cross-scale dynamics: governance and information in a multilevel world. Ecol. Soc. 11, 8 (2006).

    Article  Google Scholar 

  6. Levins, R. A. & Vandermeer, J. H. The Agroecosystem Embedded in a Complex Ecological Community 341–362 (McGraw-Hill, New York, 1990).

  7. Klerkx, L., Aarts, N. & Leeuwis, C. Adaptive management in agricultural innovation systems: the interactions between innovation networks and their environment. Agric. Syst. 103, 390–400 (2010).

    Article  Google Scholar 

  8. Levins, R. A. & Cochrane, W. W. The treadmill revisited. Land Econ. 72, 550–553 (1996).

    Article  Google Scholar 

  9. Jevons, W. S. The Coal Question: An Enquiry Concerning the Progress of the Nation, and the Probable Exhaustion of Our Coal-mines (Macmillan, London, 1865).

  10. May, R. M. Stability and Complexity in Model Ecosystems (Princeton Univ. Press, Princeton, 2001).

  11. Ortiz, M. & Wolff, M. Mass-balanced trophic and loop models of complex benthic systems in northern Chile (SE Pacific) to improve sustainable interventions: a comparative analysis. Hydrobiologia 605, 1–10 (2008).

    Article  Google Scholar 

  12. Estes, J. A. et al. Trophic downgrading of planet Earth. Science 333, 301–306 (2011).

    Article  CAS  Google Scholar 

  13. Frank, A. B. et al. Dealing with femtorisks in international relations. Proc. Natl Acad. Sci. USA 111, 17356–17362 (2014).

    Article  CAS  Google Scholar 

  14. Barnett, T. P. et al. Human-induced changes in the hydrology of the western United States. Science 319, 1080–1083 (2008).

    Article  CAS  Google Scholar 

  15. Shiyomi, M. in Structure and Function in Agroecosystem Design and Management (eds Shiyomi, M. & Koizumi, H.) 95–112 (CRC, Boca Raton, 2001).

  16. IPCC Climate Change 2007: Mitigation of Climate Change (eds Metz, B., Davidson, O., Bosch, O. J. H., Dave, R. & Meyer, L. A.) (Cambridge Univ. Press, 2007).

  17. Rothman, D. S. & Robinson, J. B. Growing pains: a conceptual framework for considering integrated assessments. Environ. Monit. Assess. 46, 23–43 (1997).

    Article  Google Scholar 

  18. Hawken, P., Lovins, A. B. & Lovins, L. H. Natural Capitalism: The Next Industrial Revolution (Earthscan, London, 1999).

  19. Bosch, O. J. H., King, C. A., Herbohn, J. L., Russell, I. W. & Smith, C. S. Getting the big picture in natural resource managementsystems thinking as ‘method’ for scientists, policy makers and other stakeholders. Syst. Res. Behav. Sci. 24, 217–232 (2007).

    Article  Google Scholar 

  20. Ison, R. L., Maiteny, P. T. & Carr, S. Systems methodologies for sustainable natural resources research and development. Agric. Syst. 55, 257–272 (1997).

    Article  Google Scholar 

  21. Meadows, D. H. Thinking in Systems: A Primer (Chelsea Green, White River Junction, 2008).

  22. Schvaneveldt, R. W. et al. Measuring the structure of expertise. Int. J. Man. Mach. Stud. 23, 699–728 (1985).

    Article  Google Scholar 

  23. Olazabal, M., Chiabai, A., Foudi, S. & Neumann, M. B. Emergence of new knowledge for climate change adaptation. Environ. Sci. Policy 83, 46–53 (2018).

    Article  Google Scholar 

  24. Bai, X. et al. Defining and advancing a systems approach for sustainable cities. Curr. Opin. Environ. Sustain. 23, 69–78 (2016).

    Article  Google Scholar 

  25. Meinke, H. et al. Adaptation science for agriculture and natural resource management urgency and theoretical basis. Curr. Opin. Environ. Sustain. 1, 69–76 (2009).

    Article  Google Scholar 

  26. Halbrendt, J. et al. Differences in farmer and expert beliefs and the perceived impacts of conservation agriculture. Glob. Environ. Change 28, 50–62 (2014).

    Article  Google Scholar 

  27. Gray, S. A., Chan, A., Clark, D. & Jordan, R. Modeling the integration of stakeholder knowledge in socialecological decision-making: benefits and limitations to knowledge diversity. Ecol. Model. 229, 88–96 (2012).

    Article  Google Scholar 

  28. Stier, A. C. et al. Integrating expert perceptions into food web conservation and management. Conserv. Lett. 10, 67–76 (2017).

    Article  Google Scholar 

  29. Gray, S. A. et al. Using fuzzy cognitive mapping as a participatory approach to analyze change, preferred states, and perceived resilience of social-ecological systems. Ecol. Soc. 20, 11 (2015)..

  30. Singer, A. et al. Translating community narratives into semi-quantitative models to understand the dynamics of socio-environmental crises. Environ. Model. Software 97, 46–55 (2017).

    Article  Google Scholar 

  31. Checkland, P. Soft systems methodology: a thirty year retrospective. Syst. Res. Behav. Sci. 17, S11–S58 (2000).

    Article  Google Scholar 

  32. Cundill, G., Cumming, G. S., Biggs, D. & Fabricius, C. Soft systems thinking and social learning for adaptive management. Conserv. Biol. 26, 13–20 (2012).

    Article  CAS  Google Scholar 

  33. Head, B. W. & Alford, J. Wicked problems: implications for public policy and management. Adm. Soc. 47, 711–739 (2015).

    Article  Google Scholar 

  34. Institute of Medicine & National Research Council. A Framework for Assessing Effects of the Food System (National Academies, Washington, 2015).

  35. Levy, M. A., McRoberts, N. & Lubell, M. N. Pillars of Sustainable Agriculture (Center for Environmental Policy and Behavior, 2016).

  36. Levy, M. A. Sustainable Agriculture Knowledge Networks and Mental Models (Univ. California, Davis, 2017).

  37. Farm Income and Wealth Statistics (USDA, Econ. Res. Service, 2017).

  38. Lubell, M., Niles, M. & Hoffman, M. Extension 3.0: managing agricultural knowledge systems in the network age. Soc. Nat. Res. 27, 1089–1103 (2014).

    Article  Google Scholar 

  39. Ohmart, C. P. View from the Vineyard: A Practical Guide to Sustainable Winegrape Growing (Wine Appreciation Guild, San Francisco, 2011).

  40. Rouse, W. B. & Morris, N. M. On looking into the black box: prospects and limits in the search for mental models. Psychol. Bull. 100, 349–363 (1986).

    Article  Google Scholar 

  41. White, P. A. The anthropomorphic machine: causal order in nature and the world view of common sense. Br. J. Psychol. 83, 61–96 (1992).

    Article  Google Scholar 

  42. Mathieu, J. E., Heffner, T. S., Goodwin, G. F., Salas, E. & Cannon-Bowers, J. A. The influence of shared mental models on team process and performance. J. Appl. Psychol. 85, 273–283 (2000).

    Article  CAS  Google Scholar 

  43. Allison, D. J., Morfitt, G. & Demaerschalk, D. Cognitive complexity and expertise: relationships between external and internal measures of cognitive complexity and abstraction, and responses to a case problem. In Annual Meeting of the American Education Resource Association ED412604 (Educational Resources Information Center, Washington DC, 1996).

  44. Grotzer, T. A. & Perkins, D. N. in National Association of Research in Science Teaching Annual International Conference (2000).

  45. Slotta, J. D. & Chi, M. T. Helping students understand challenging topics in science through ontology training. Cognit. Instruct. 24, 261–289 (2006).

    Article  Google Scholar 

  46. Eden, C. On the nature of cognitive maps. J. Manage. Studies 29, 261–265 (1992).

    Article  Google Scholar 

  47. Bueno, S. & Salmeron, J. L. Benchmarking main activation functions in fuzzy cognitive maps. Expert Syst. Applic. 36, 5221–5229 (2009).

    Article  Google Scholar 

  48. Richards, D. Coordination and shared mental models. Am. J. Pol. Sci. 45, 259 (2001).

    Article  Google Scholar 

  49. Lakoff, G. Whose Freedom? The Battle over America’s Most Important Idea (Farrar, Straus and Giroux, New York, 2006).

  50. Dickerson, J. A. & Kosko, B. Virtual worlds as fuzzy cognitive maps. Pres. Teleop. Virt. Environ. 3, 173–189 (1994).

    Article  Google Scholar 

  51. Stylios, C. D. & Groumpos, P. P. Fuzzy cognitive maps: a model for intelligent supervisory control systems. Comput. Indust. 39, 229–238 (1999).

    Article  Google Scholar 

  52. Jetter, A. J. & Kok, K. Fuzzy cognitive maps for futures studies methodological assessment of concepts and methods. Futures 61, 45–57 (2014).

    Article  Google Scholar 

  53. Trope, Y. & Liberman, N. Construal-level theory of psychological distance. Psychol. Rev. 117, 440–463 (2010).

    Article  Google Scholar 

  54. Gray, S., Hilsberg, J., McFall, A. & Arlinghaus, R. The structure and function of angler mental models about fish population ecology: the influence of specialization and target species. J. Outdoor Recr. Tourism 12, 1–13 (2015).

    Article  Google Scholar 

  55. Grotzer, T. A. Children’s Understanding of Complex Causal Relationships in Natural Systems (Harvard Univ., Cambridge, 1993).

  56. Bell-Basca, B., Grotzer, T. A., Donis, K. & Shaw, S. Using domino and relational causality to analyze ecosystems: realizing what goes around comes around. In Annual Meeting of the National Association of Research in Science Teaching, New Orleans, LA (2000);

  57. White, P. A. Naive ecology: causal judgments about a simple ecosystem. Br. J. Psychol. 88, 219–233 (1997).

    Article  Google Scholar 

  58. Jaques, E. The development of intellectual capability: a discussion of stratified systems theory. J. Appl. Behav. Sci. 22, 361–383 (1986).

    Article  Google Scholar 

  59. Langan-Fox, J., Wirth, A., Code, S., Langfield-Smith, K. & Wirth, A. Analyzing shared and team mental models. Int. J. Ind. Ergon. 28, 99–112 (2001).

    Article  Google Scholar 

  60. Leveson, N. Engineering a Safer World: Systems Thinking Applied to Safety (MIT, Cambridge, 2011).

  61. Davis, M. C., Challenger, R., Jayewardene, D. N. W. & Clegg, C. W. Advancing socio-technical systems thinking: a call for bravery. Appl. Ergon. 45, 171–180 (2014).

    Article  Google Scholar 

  62. Faust, K. & Skvoretz, J. Comparing networks across space and time, size and species. Sociol. Methodol. 32, 267–299 (2002).

    Article  Google Scholar 

  63. Lusher, D., Koskinen, J. & Robins, G. Exponential Random Graph Models for Social Networks: Theory, Methods, and Applications (Cambridge Univ. Press, Cambridge, 2012).

  64. Anderson, B. S., Butts, C. T. & Carley, K. The interaction of size and density with graph-level indices. Soc. Networks 21, 239–267 (1999).

    Article  Google Scholar 

  65. Butts, C. T. Social network analysis: a methodological introduction. Asian J. Soc. Psychol. 11, 13–41 (2008).

    Article  Google Scholar 

  66. Eden, C., Ackermann, F. & Cropper, S. The analysis of cause maps. J. Manage. Studies 29, 309–324 (1992).

    Article  Google Scholar 

  67. Özesmi, U. & Özesmi, S. L. Ecological models based on people’s knowledge: a multi-step fuzzy cognitive mapping approach. Ecol. Modell. 176, 43–64 (2004).

    Article  Google Scholar 

  68. MacDonald, N. Trees and Networks in Biological Models (Wiley, Hoboken, 1983).

  69. Özesmi, U. & Özesmi, S. L. A participatory approach to ecosystem conservation: fuzzy cognitive maps and stakeholder group analysis in Uluabat Lake, Turkey. Environ. Manage. 31, 0518–0531 (2003).

    Article  Google Scholar 

  70. Krackhardt, D. in Graph Theoretical Dimensions of Informal Organizations 89–111 (1994).

  71. Sabatier, P. A. An advocacy coalition framework of policy change and the role of policy-oriented learning therein. Policy Sci. 21, 129–168 (1988).

    Article  Google Scholar 

  72. Jenkins-Smith, H. C. & Sabatier, P. A. Evaluating the advocacy coalition framework. J. Public Policy 14, 175–203 (1994).

    Article  Google Scholar 

  73. Gigerenzer, G., Todd, P. & Group, A. R. Simple Heuristics That Make Us Smart (Oxford Univ. Press, Oxford, 1999).

  74. Gigerenzer, G. & Gaissmaier, W. Heuristic decision making. Annu. Rev. Psychol. 62, 451–482 (2011).

    Article  Google Scholar 

  75. Gray, S. A., Gray, S., Cox, L. J. & Henly-Shepard, S. Mental Modeler: a fuzzy-logic cognitive mapping modeling tool for adaptive environmental management. In 2013 46th Hawaii Int. Conf. on System Sciences 965–973 (IEEE, Washington DC, 2013).

  76. R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2017).

  77. Handcock, M. S. et al. Statnet: Software Tools for the Statistical Analysis of Network Data (2016).

  78. Handcock, M. S., Hunter, D. R., Butts, C. T., Goodreau, S. M. & Morris, M. Statnet: software tools for the representation, visualization, analysis and simulation of network data. J. Stat. Softw. 24, 1–11 (2008).

    Article  Google Scholar 

  79. McElreath, R. Rethinking: Statistical Rethinking Book Package (2016).

  80. Wickham, H. Tidyverse: Easily Install and Load ’Tidyverse’ Packages (2017).

  81. Levy, M. netUtils: Network Utilities (2017).

  82. Wei, T. & Simko, V. R package ‘corrplot’: Visualization of a Correlation Matrix (2017).

  83. Galili, T. Dendextend: an R package for visualizing, adjusting, and comparing trees of hierarchical clustering. Bioinformatics 31, 3718–3720 (2015).

    Article  CAS  Google Scholar 

  84. Kassambara, A. & Mundt, F. Factoextra: Extract and Visualize the Results of Multivariate Data Analyses (2017).

  85. Ward, J. H. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 58, 236–244 (1963).

    Article  Google Scholar 

  86. Murtagh, F. & Legendre, P. Ward’s hierarchical agglomerative clustering method: which algorithms implement Ward’s criterion? J. Classific. 31, 274–295 (2014).

    Article  Google Scholar 

  87. Stan Development Team. Stan: A C++ Library for Probability and Sampling, V. 2.10.0 (2015).

Download references


The 148 experts who provided their mental models made this study possible, and we are deeply grateful to them. Additionally, the local community leaders who helped assemble the groups of experts were essential to this study’s success, and we thank S. Rios, L. Bell, C. Smith, H. George, D. Doll and G. Miyao for their time and effort. The UC Davis Agricultural Sustainability Institute provided support that made this work possible, and we particularly thank B. Ransom for her contributions, as well as Marco Bastos and Carlos Barahona for valuable discussions.

Author information

Authors and Affiliations



All authors contributed to designing the study, hosting workshops, analysing data, and preparing the manuscript.

Corresponding author

Correspondence to Michael A. Levy.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Table 1, Supplementary Figures 1-4

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levy, M.A., Lubell, M.N. & McRoberts, N. The structure of mental models of sustainable agriculture. Nat Sustain 1, 413–420 (2018).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene