Trade and the role of non-food commodities for global eutrophication

Abstract

The oversupply of nutrients (phosphorous and nitrogen) in fresh and marine water bodies presents a serious ecosystem threat due to impacts on water quality through eutrophication. With agriculture characterized as a primary driver of eutrophication, the role of food consumption and trade has been the focus of recent phosphorus and nitrogen impact studies. However, the environmental impacts associated with non-food commodities are significant and yet to be characterized. Here, we link a spatially explicit treatment of phosphorous and nitrogen eutrophication potentials to a multi-regional input–output approach to characterize the importance of overall consumption for marine and freshwater eutrophication across 44 countries and 5 rest-of-world regions over the period 2000–2011. We find that clothing, goods for shelter, services and other manufactured products account for 35% of global marine eutrophication and 38% of the global freshwater eutrophication footprints in 2011, up from 31 and 33%, respectively, in 2000. Relative to food consumption, non-food consumption is also significantly more income elastic and shaped by trade. As economies develop, this points to the need for trade agreements and policies to consider the displacement of ecosystem impacts.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Global ME and FE footprints.
Fig. 2: Eutrophication impacts embodied in trade.

References

  1. 1.

    Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R. L. & Polasky, S. Agricultural sustainability and intensive production practices. Nature 418, 671–677 (2002).

    Article  CAS  Google Scholar 

  2. 2.

    Smith, V. H., Tilman, G. D. & Nekola, J. C. Eutrophication: impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environ. Pollut. 100, 179–196 (1999).

    Article  CAS  Google Scholar 

  3. 3.

    Potter, P., Ramankutty, N., Bennett, E. M. & Donner, S. D. Characterizing the spatial patterns of global fertilizer application and manure production. Earth Interact. https://doi.org/10.1175/2009EI288.1 (2010).

  4. 4.

    Diaz, R. J. & Rosenberg, R. Spreading dead zones and consequences for marine ecosystems. Science 321, 926–929 (2008).

    Article  CAS  Google Scholar 

  5. 5.

    Steffen, W. et al. Planetary boundaries: guiding human development on a changing planet. Science 347, 1259855 (2015).

    Article  CAS  Google Scholar 

  6. 6.

    Leip, A. et al. Impacts of European livestock production: nitrogen, sulphur, phosphorus and greenhouse gas emissions, land-use, water eutrophication and biodiversity. Environ. Res. Lett. 10, 115004 (2015).

    Article  CAS  Google Scholar 

  7. 7.

    Lassaletta, L. et al. Food and feed trade as a driver in the global nitrogen cycle: 50-year trends. Biogeochemistry 118, 225–241 (2014).

    Article  Google Scholar 

  8. 8.

    Schipanski, M. E. & Bennett, E. M. The influence of agricultural trade and livestock production on the global phosphorus cycle. Ecosystems 15, 256–268 (2012).

    Article  CAS  Google Scholar 

  9. 9.

    Schmitz, C. et al. Trading more food: implications for land use, greenhouse gas emissions, and the food system. Global Environ. Change 22, 189–209 (2012).

    Article  Google Scholar 

  10. 10.

    Xue, X. & Landis, A. E. Eutrophication potential of food consumption patterns. Environ. Sci. Technol. 44, 6450–6456 (2010).

    Article  CAS  Google Scholar 

  11. 11.

    Mekonnen, M. M., Lutter, S. & Martinez, A. Anthropogenic nitrogen and phosphorus emissions and related grey water footprints caused by EU-27’s crop production and consumption. Water 8, 1–14 (2016).

    Article  CAS  Google Scholar 

  12. 12.

    Oita, A. et al. Substantial nitrogen pollution embedded in international trade. Nat. Geosci. 9, 111–115 (2016).

    Article  CAS  Google Scholar 

  13. 13.

    MacDonald, G. K. et al. Rethinking agricultural trade relationships in an era of globalization. Bioscience 65, 275–289 (2015).

    Article  Google Scholar 

  14. 14.

    Hertwich, E. G. The life cycle environmental impacts of consumption. Econ. Syst. Res. 23, 27–47 (2011).

    Article  Google Scholar 

  15. 15.

    He, Q. et al. Economic development and coastal ecosystem change in China. Sci. Rep. 4, 1–9 (2014).

    Google Scholar 

  16. 16.

    Wood, R. et al. Growth in environmental footprints and environmental impacts embodies in trade: resource efficiency indicators from EXIOBASE3. J. Indust. Ecol. https://doi.org/10.1111/jiec.12735 (2018).

  17. 17.

    Huijbregts, M. A. J. et al. ReCiPe2016: a harmonized life cycle impact assessment method at midpoint and endpoint level. Int. J. Life Cycle Assess. 22, 138–147 (2017).

    Article  Google Scholar 

  18. 18.

    Mekonnen, M. M. & Hoekstra, A. Y. Global gray water footprint and water pollution levels related to anthropogenic nitrogen loads to fresh water. Environ. Sci. Technol. 49, 12860–12868 (2015).

    Article  CAS  Google Scholar 

  19. 19.

    Giljum, S. et al. Identifying priority areas for European resource policies: a MRIO-based material footprint assessment. J. Econ. Struct. 5, 17 (2016).

    Article  Google Scholar 

  20. 20.

    Ivanova, D. et al. Environmental impact assessment of household consumption. J. Ind. Ecol. 20, 526–536 (2016).

    Article  CAS  Google Scholar 

  21. 21.

    Steen-Olsen, K., Wood, R. & Hertwich, E. G. The carbon footprint of Norwegian household consumption 1999-2012. J. Ind. Ecol. 20, 582–592 (2016).

    Article  CAS  Google Scholar 

  22. 22.

    Selman, M. & Greenhalgh, S. Eutrophication: Policies, Actions, and Strategies to Address Nutrient Pollution (World Resources Institute, 2009)..

  23. 23.

    European Commission Water Frameworks Directive (The EU Nitrates Directive 1–4, 2010); http://ec.europa.eu/environment/water/water-nitrates/index_en.html

  24. 24.

    Shortle, J. S. & Abler, D. G. Environmental Policies for Agricultural Pollution Control (Centre for Agriculture and Bioscience International, 2001).

  25. 25.

    European Commission DG Environment Joining Forces for Europe’s Shared Waters: Coordination in International River Basin Districts (The EU Water Framework Directive, 2008); http://ec.europa.eu/environment/water/water-framework/index_en.html

  26. 26.

    Sutton, M. A., Howard, C. M., Bleeker, A. & Datta, A. The global nutrient challenge: from science to public engagement. Environ. Dev. 6, 80–85 (2013).

    Article  Google Scholar 

  27. 27.

    Le, C. et al. Eutrophication of lake waters in China: cost, causes, and control. Environ. Manag. 45, 662–668 (2010).

    Article  CAS  Google Scholar 

  28. 28.

    Lenzen, M., Moran, D., Kanemoto, K. & Geschke, A. Building Eora: a global multi-region input–output database at high country and sector resolution. Econ. Syst. Res. 25, 20–49 (2013).

    Article  Google Scholar 

  29. 29.

    Weinzettel, J., Steen-Olsen, K., Hertwich, E. G., Borucke, M. & Galli, A. Ecological footprint of nations: comparison of process analysis, and standard and hybrid multiregional input–output analysis. Ecol. Econ. 101, 115–126 (2014).

    Article  Google Scholar 

  30. 30.

    Weinzettel, J. & Wood, R. Environmental footprints of agriculture embodied in international trade: sensitivity of harvested area footprint of Chinese exports. Ecol. Econ. 145, 323–330 (2018).

    Article  Google Scholar 

  31. 31.

    Moran, D. & Wood, R. Convergence between the EORA, WIOD, EXIOBASE, and OPENEU’S consumption-based carbon accounts. Econ. Syst. Res. 26, 1469–5758 (2014).

    Article  Google Scholar 

  32. 32.

    Tukker, A. Towards robust, authoritative assessments of environmental impacts embodied in trade: current state and recommendations. J. Indust. Ecol. https://doi.org/10.1111/jiec.12716 (2018).

    Article  Google Scholar 

  33. 33.

    Elser, J. J. et al. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol. Lett. 10, 1135–1142 (2007).

    Article  Google Scholar 

  34. 34.

    Howarth, R. W. & Marino, R. Nitrogen as the limiting nutrient for eutrophication in coastal marine ecosystems: evolving views over three decades. Limnol. Oceanogr. 51, 364–376 (2006).

    Article  CAS  Google Scholar 

  35. 35.

    Sterner, R. W. On the phosphorus limitation paradigm for lakes. Int. Rev. Hydrobiol. 93, 433–445 (2008).

    Article  CAS  Google Scholar 

  36. 36.

    Azevedo, L. B. et al. Assessing the importance of spatial variability versus model choices in life cycle impact assessment: the case of freshwater eutrophication in Europe. Environ. Sci. Technol. 47, 13565–13570 (2013).

    Article  CAS  Google Scholar 

  37. 37.

    Helmes, R. J. K., Huijbregts, Ma. J., Henderson, A. D. & Jolliet, O. Spatially explicit fate factors of phosphorous emissions to freshwater at the global scale. Int. J. Life Cycle Assess. 17, 646–654 (2012).

    Article  CAS  Google Scholar 

  38. 38.

    Cosme, N., Jones, M. C., Cheung, W. W. L. & Larsen, H. F. Spatial differentiation of marine eutrophication damage indicators based on species density. Ecol. Indic. 73, 676–685 (2017).

    Article  CAS  Google Scholar 

  39. 39.

    Wood, R. et al. Global sustainability accounting-developing EXIOBASE for multi-regional footprint analysis. Sustain 7, 138–163 (2015).

    Article  Google Scholar 

  40. 40.

    Hertwich, E. & Peters, G. Carbon footprint of nations: a global, trade-linked analysis. Environ. Sci. Technol. 43, 6414–6420 (2009).

    Article  CAS  Google Scholar 

  41. 41.

    Zhang, C. & Anadon, L. D. A multi-regional input-output analysis of domestic virtual water trade and provincial water footprint in China. Ecol. Econ. 100, 159–172 (2014).

    Article  Google Scholar 

  42. 42.

    Simas, M., Wood, R. & Hertwich, E. Labor embodied in trade. J. Ind. Ecol. 19, 343–356 (2015).

    Article  Google Scholar 

  43. 43.

    Turner, K., Lenzen, M., Wiedmann, T. & Barrett, J. Examining the global environmental impact of regional consumption activities — part 1: a technical note on combining input-output and ecological footprint analysis. Ecol. Econ. 62, 37–44 (2007).

    Article  Google Scholar 

  44. 44.

    Miller, R. A. & Blair, P. D. Input-Output Analysis Foundations and Extensions (Cambridge Univ. Press, Cambridge, 2009).

  45. 45.

    Murray, J. & Wood, R. (eds) The Sustainability Practitioner’s Guide to Input-Output Analysis (Common Ground Research Networks, Champaign, IL, 2010).

  46. 46.

    Stadler, K. et al. EXIOBASE 3 Developing a time series of detailed Environmentally Extended Multi-Regional Input-Output tables. J. Ind. Ecol. https://doi.org/10.1111/jiec.12715 (2018).

  47. 47.

    Aguiar, A., Narayanan, B., & McDougall, R. An overview of the GTAP 9 data base. J. Glob. Econ. 1, 181–208 (2016).

    Google Scholar 

  48. 48.

    Owen, A., Steen-Olsen, K., Barrett, J., Wiedmann, T. & Lenzen, M. A structural decomposition approach to comparing MRIO databases. Econ. Syst. Res. 26, 262–283 (2014).

    Article  Google Scholar 

  49. 49.

    Stadler, K., Steen-olsen, K. & Wood, R. The ‘rest of the world’—estimating the economic structure of missing regions in global multi-regional input-output tables. Econ. Syst. Res. 26, 303–326 (2014).

    Article  Google Scholar 

  50. 50.

    Steen-Olsen, K., Owen, A., Hertwich, E. G. & Lenzen, M. Effects of sector aggregation on CO2 multipliers in multiregional input-output analysis. Econ. Syst. Res. 284–302 (2014).

  51. 51.

    Bouwmeester, M. & Oosterhaven, J. Specification and aggregation errors in environmentally extended input–output models. Environ. Resour. Econ. 56, 307–335 (2013).

    Article  Google Scholar 

  52. 52.

    Dietzenbacher, E. & Lahr, M. L. Expanding extractions. Econ. Syst. Res. 25, 341–360 (2013).

    Article  Google Scholar 

  53. 53.

    FAOSTAT (FAO, accessed 25 February 2016); http://faostat.fao.org/site/567/DesktopDefault.aspx#ancor

  54. 54.

    Fertilizer Use by Crop Fertilizer and Plant Nutrition Bulletin 17 (FAO, 2006).

  55. 55.

    De Klein, C. et al. in 2006 IPCC Guidelines for National Greenhouse Gas Inventories Vol. 4 (eds Eggleston, H. S., Buendia, L., Miwa, K., Ngara, T. & Tanabe, K.) Ch. 11 (IGES, 2006).

  56. 56.

    Bouwman, A. F., Beusen, A. H. W. & Billen, G. Human alteration of the global nitrogen and phosphorus soil balances for the period 1970-2050. Global Biogeochem. Cycles 23, (2009).

  57. 57.

    Bennett, E. M., Carpenter, S. R. & Caraco, N. F. Human impact on erodable phosphorus and eutrophication: a global perspective. Bioscience 51, 227 (2001).

    Article  Google Scholar 

  58. 58.

    Cosme, N., Koski, M. & Hauschild, M. Z. Exposure factors for marine eutrophication impacts assessment based on a mechanistic biological model. Ecol. Modell. 317, 50–63 (2015).

    Article  CAS  Google Scholar 

  59. 59.

    Cosme, N., Mayorga, E. & Hauschild, M. Z. Spatially explicit fate factors of waterborne nitrogen emissions at the global scale. Int. J. Life Cycle Assess. https://doi.org/10.1007/s11367-017-1349-0 (2017).

  60. 60.

    Roy, P. O., Huijbregts, M., Deschênes, L. & Margni, M. Spatially-differentiated atmospheric source-receptor relationships for nitrogen oxides, sulfur oxides and ammonia emissions at the global scale for life cycle impact assessment. Atmos. Environ. 62, 74–81 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank K. Bjørset (Norkart), K. Steen-Olsen (Norwegian University of Science and Technology (NTNU)) and M. Simas (NTNU) for their technical support, M. Huijbrets (Radboud University) for his valuable comments and feedback, and G. Majeau-Bettez, C. Bulle (CIRAIG) and F. Verones (NTNU) for help with characterization factors. We would also like to thank R. Lonka (NTNU) for his assistance with the visualization tools.

Author information

Affiliations

Authors

Contributions

H.A.H. and R.W. designed the study. R.W. prepared the IO model and basic results. S.M. and J.S. developed the phosphorus and nitrogen accounts. R.v.Z. prepared the impact assessment method. H.A.H. and D.I. conducted the analysis. D.M. conducted the sensitivity analysis. H.A.H. made the figures. H.A.H., R.W., K.S. and D.I. contributed to the data interpretation. H.A.H., D.I. and R.W. wrote the paper. H.A.H., R.W., D.I., R.v.Z., K.S., S.M., D.M. and J.S. contributed to manuscript editing.

Corresponding author

Correspondence to Richard Wood.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publishers note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Information, Supplementary Figures 1-4, Supplementary Tables 1-13, Supplementary References 1–81

Supplementary Information Data File

Supplementary data and results, including all footprint data (aggregates and by producing sectors) and economic data

Statistical Code

Statistical code for regressions

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hamilton, H.A., Ivanova, D., Stadler, K. et al. Trade and the role of non-food commodities for global eutrophication. Nat Sustain 1, 314–321 (2018). https://doi.org/10.1038/s41893-018-0079-z

Download citation

Further reading