Social-ecological outcomes of agricultural intensification

A Publisher Correction to this article was published on 27 June 2018

This article has been updated

Land-use intensification in agrarian landscapes is seen as a key strategy to simultaneously feed humanity and use ecosystems sustainably, but the conditions that support positive social-ecological outcomes remain poorly documented. We address this knowledge gap by synthesizing research that analyses how agricultural intensification affects both ecosystem services and human well-being in low- and middle-income countries. Overall, we find that agricultural intensification is rarely found to lead to simultaneous positive ecosystem service and well-being outcomes. This is particularly the case when ecosystem services other than food provisioning are taken into consideration.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Geographic distribution of the cases by social-ecological outcomes.
Fig. 2: Distribution of evidence of the effects of agricultural intensification on ecosystem services and well-being.
Fig. 3: Impact of land-use intensification on ecosystem services and human well-being.
Fig. 4: Combined effect of different types of agricultural intensification on ecosystem services and well-being.

Change history

  • 27 June 2018

    In the version of this Review originally published, the top heading in the first column of Fig. 2 was mistakenly written ‘Food poisoning’; it should have read ‘Food provisioning’. This has now been corrected.

References

  1. 1.

    DeClerck, F. A. J. et al. Agricultural ecosystems and their services: the vanguard of sustainability? Curr. Opin. Environ. Sustain. 23, 92–99 (2016).

    Article  Google Scholar 

  2. 2.

    Godfray, H. C. J. et al. Food security: the challenge of feeding 9 billion people. Science 327, 812–818 (2010).

    Article  CAS  Google Scholar 

  3. 3.

    Rockström, J. et al. Sustainable intensification of agriculture for human prosperity and global sustainability. Ambio 46, 4–17 (2017).

    Article  Google Scholar 

  4. 4.

    Transforming Our World: The 2030 Agenda for Sustainable Development (United Nations, 2015).

  5. 5.

    Tilman, D., Balzer, C., Hill, J. & Befort, B. L. Global food demand and the sustainable intensification of agriculture. Proc. Natl Acad. Sci. USA 108, 20260–20264 (2011).

    Article  Google Scholar 

  6. 6.

    Matson, P. A., Parton, W. J., Power, A. G. & Swift, M. J. Agricultural intensification and ecosystem properties. Science 277, 504–509 (1997).

    Article  CAS  Google Scholar 

  7. 7.

    Turner, W. R. et al. Global biodiversity conservation and the alleviation of poverty. BioScience 62, 85–92 (2012).

    Article  Google Scholar 

  8. 8.

    Green, R. E., Cornell, S. J., Scharlemann, J. P. W. & Balmford, A. Farming and the fate of wild nature. Science 307, 550–555 (2005).

    Article  CAS  Google Scholar 

  9. 9.

    Phalan, B., Onial, M., Balmford, A. & Green, R. E. Reconciling food production and biodiversity conservation: land sharing and land sparing compared. Science 333, 1289–1291 (2011).

    Article  CAS  Google Scholar 

  10. 10.

    Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012); corrigendum 489, 326 (2012).

  11. 11.

    Fischer, J. et al. Reframing the food–biodiversity challenge. Trends Ecol. Evol. 32, 335–345 (2017).

    Article  Google Scholar 

  12. 12.

    DeFries, R. S., Foley, J. A. & Asner, G. P. Land-use choices: balancing human needs and ecosystem function. Front. Ecol. Environ. 2, 249–257 (2004).

    Article  Google Scholar 

  13. 13.

    Dressler, W. H. et al. The impact of swidden decline on livelihoods and ecosystem services in Southeast Asia: a review of the evidence from 1990 to 2015. Ambio 46, 291–310 (2017).

    Article  Google Scholar 

  14. 14.

    van Vliet, N. et al. Trends, drivers and impacts of changes in swidden cultivation in tropical forest-agriculture frontiers: a global assessment. Glob. Environ. Change 22, 418–429 (2012).

    Article  Google Scholar 

  15. 15.

    Power, A. G. Ecosystem services and agriculture: tradeoffs and synergies. Philos. Trans. R. Soc. B 365, 2959–2971 (2010).

    Article  Google Scholar 

  16. 16.

    Rasmussen, L. V., Bierbaum, R., Oldekop, J. A. & Agrawal, A. Bridging the practitioner-researcher divide: indicators to track environmental, economic, and sociocultural sustainability of agricultural commodity production. Glob. Environ. Change 42, 33–46 (2017).

    Google Scholar 

  17. 17.

    Guerry, A. D. et al. Natural capital and ecosystem services informing decisions: from promise to practice. Proc. Natl Acad. Sci. USA 112, 7348–7355 (2015).

    Article  CAS  Google Scholar 

  18. 18.

    Tallis, H., Kareiva, P., Marvier, M. & Chang, A. An ecosystem services framework to support both practical conservation and economic development. Proc. Natl Acad. Sci. USA 105, 9457–9464 (2008).

    Article  Google Scholar 

  19. 19.

    Díaz, S. et al. Assessing nature’s contributions to people. Science 359, 270–272 (2018).

    Article  Google Scholar 

  20. 20.

    Pascual, U. & Howe, C. in Ecosystem Services and Poverty Alleviation: Trade-Offs and Governance (eds Schrekenberg, K. et al.) 3–21 (Routledge, Oxon, 2018).

  21. 21.

    Suich, H., Howe, C. & Mace, G. Ecosystem services and poverty alleviation: a review of the empirical links. Ecosyst. Serv. 12, 137–147 (2015).

    Article  Google Scholar 

  22. 22.

    Howe, C., Suich, H., Vira, B. & Mace, G. M. Creating win-wins from trade-offs? Ecosystem services for human well-being: a meta-analysis of ecosystem service trade-offs and synergies in the real world. Glob. Environ. Change 28, 263–275 (2014).

    Article  Google Scholar 

  23. 23.

    Clough, Y. et al. Land-use choices follow profitability at the expense of ecological functions in Indonesian smallholder landscapes. Nat. Commun. 7, 13137 (2016).

    Article  CAS  Google Scholar 

  24. 24.

    Pascual, U. et al. Off-stage ecosystem service burdens: a blind spot for global sustainability. Environ. Res. Lett. 12, 075001 (2017).

    Article  Google Scholar 

  25. 25.

    Zhang, K. et al. Poverty alleviation strategies in eastern China lead to critical ecological dynamics. Sci. Tot. Environ. 506–507, 164–181 (2015).

    Article  CAS  Google Scholar 

  26. 26.

    Bommarco, R., Kleijn, D. & Potts, S. G. Ecological intensification: harnessing ecosystem services for food security. Trends Ecol. Evol. 28, 230–238 (2013).

    Article  Google Scholar 

  27. 27.

    Borlaug, N. Feeding a hungry world. Science 318, 359–359 (2007).

    Article  CAS  Google Scholar 

  28. 28.

    Betts, M. G. et al. Global forest loss disproportionately erodes biodiversity in intact landscapes. Nature 547, 441–444 (2017).

    Article  CAS  Google Scholar 

  29. 29.

    Shcherbak, I., Millar, N. & Robertson, G. P. Global meta-analysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogen. Proc. Natl Acad. Sci. USA 111, 9199–9204 (2014).

    Article  CAS  Google Scholar 

  30. 30.

    Wildlife Conservation Society and Center for International Earth Science Information Network Last of the Wild Project, Version 2, 2005 (LWP-2): Global Human Footprint Dataset (Geographic) (NASA Socioeconomic Data and Applications Center, 2005); https://doi.org/10.7927/H4M61H5F.

  31. 31.

    Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).

    Article  CAS  Google Scholar 

  32. 32.

    Human Development Report 2011Sustainability and Equity: A Better Future for All (United Nations Development Programme, 2011).

  33. 33.

    Kummu, M., Taka, M. & Guillaume, J. H. A. Dryad Digital Repository https://doi.org/10.5061/dryad.dk1j0 (2018).

  34. 34.

    Kummu, M., Taka, M. & Guillaume, J. H. A. Gridded global datasets for gross domestic product and Human Development Index over 1990–2015. Sci. Data 5, 180004 (2018).

    Article  Google Scholar 

  35. 35.

    Holden, E., Linnerud, K. & Banister, D. Sustainable development: our common future revisited. Glob. Environ. Change 26, 130–139 (2014).

    Article  Google Scholar 

  36. 36.

    Fisher, J. A. et al. Understanding the relationships between ecosystem services and poverty alleviation: a conceptual framework. Ecosyst. Serv. 7, 34–45 (2014).

    Article  Google Scholar 

  37. 37.

    Snilstveit, B. et al. Land-Use Change and Forestry Programmes: Evidence on the Effects on Greenhouse Gas Emissions and Food Security Evidence Gap Map Report 3 (International Initiative for Impact Evaluation, 2016).

  38. 38.

    Jakovac, C. C., Peña-Claros, M., Kuyper, T. W. & Bongers, F. Loss of secondary-forest resilience by land-use intensification in the Amazon. J. Ecol. 103, 67–77 (2015).

    Article  Google Scholar 

  39. 39.

    Brown, K. A. et al. Use of provisioning ecosystem services drives loss of functional traits across land use intensification gradients in tropical forests in Madagascar. Biol. Conserv. 161, 118–127 (2013).

    Article  Google Scholar 

  40. 40.

    Shaver, I. et al. Coupled social and ecological outcomes of agricultural intensification in Costa Rica and the future of biodiversity conservation in tropical agricultural regions. Glob. Environ. Change 32, 74–86 (2015).

    Article  Google Scholar 

  41. 41.

    Aragona, F. B. & Orr, B. Agricultural intensification, monocultures, and economic failure: the case of onion production in the Tipajara watershed on the eastern slope of the Bolivian Andes. J. Sustain. Agr. 35, 467–492 (2011).

    Article  Google Scholar 

  42. 42.

    Tscharntke, T. et al. Global food security, biodiversity conservation and the future of agricultural intensification. Biol. Conserv. 151, 53–59 (2012).

    Article  Google Scholar 

  43. 43.

    Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R. & Polasky, S. Agricultural sustainability and intensive production practices. Nature 418, 671–677 (2002).

    Article  CAS  Google Scholar 

  44. 44.

    Adams, W. M. & Mortimore, M. J. Agricultural intensification and flexibility in the Nigerian Sahel. Geogr. J. 163, 150–160 (1997).

    Article  Google Scholar 

  45. 45.

    Tadesse, G., Zavaleta, E., Shennan, C. & FitzSimmons, M. Prospects for forest-based ecosystem services in forest-coffee mosaics as forest loss continues in southwestern Ethiopia. Appl. Geogr. 50, 144–151 (2014).

    Article  Google Scholar 

  46. 46.

    Islam, G. M. T. et al. Implications of agricultural land use change to ecosystem services in the Ganges Delta. J. Environ. Manage. 161, 443–452 (2015).

    Article  Google Scholar 

  47. 47.

    Alvez, J. P., Schmitt, A. L., Farley, J. C., Erickson, J. D. & Méndez, V. E. Transition from semi-confinement to pasture-based dairy in brazil: farmers’ view of economic and environmental performances. Agroecol. Sustain. Food Syst. 38, 995–1014 (2014).

    Article  Google Scholar 

  48. 48.

    Dawson, N., Martin, A. & Sikor, T. Green revolution in Sub-saharan Africa: implications of imposed innovation for the wellbeing of rural smallholders. World Dev. 78, 204–218 (2016).

    Article  Google Scholar 

  49. 49.

    Marquardt, K., Milestad, R. & Porro, R. Farmers’ perspectives on vital soil-related ecosystem services in intensive swidden farming systems in the Peruvian Amazon. Hum. Ecol. 41, 139–151 (2013).

    Article  Google Scholar 

  50. 50.

    Karp, D. S. et al. Forest bolsters bird abundance, pest control and coffee yield. Ecol. Lett. 16, 1339–1347 (2013).

    Article  Google Scholar 

  51. 51.

    Jakovac, C. C., Peña-Claros, M., Mesquita, R. C. G., Bongers, F. & Kuyper, T. W. Swiddens under transition: consequences of agricultural intensification in the Amazon. Agr. Ecosyst. Environ. 218, 116–125 (2016).

    Article  Google Scholar 

  52. 52.

    Szabo, S. et al. Soil salinity, household wealth and food insecurity in tropical deltas: evidence from south-west coast of Bangladesh. Sustain. Sci. 11, 411–421 (2016).

    Article  Google Scholar 

  53. 53.

    Millenium Ecosystem Assessment Ecosystems and Human Well Being: Synthesis (Island, 2005).

  54. 54.

    Seck, M., Mamouda, M. N. A. & Wade, S. Case study 4: Senegal adaptation and mitigation through "produced environments": the case for agriculture intensification in Senegal. IDS Bull. 36, 71–86 (2005).

    Article  Google Scholar 

  55. 55.

    Rahman, S. A. et al. Towards productive landscapes: trade-offs in tree-cover and income across a matrix of smallholder agricultural land-use systems. Land Use Policy 58, 152–164 (2016).

    Article  Google Scholar 

  56. 56.

    Shively, G. & Pagiola, S. Agricultural intensification, local labor markets, and deforestation in the Philippines. Environ. Dev. Econ. 9, 241–266 (2004).

    Article  Google Scholar 

  57. 57.

    Yin, R., Liu, C., Zhao, M., Yao, S. & Liu, H. The implementation and impacts of China’s largest payment for ecosystem services program as revealed by longitudinal household data. Land Use Policy 40, 45–55 (2014).

    Article  Google Scholar 

  58. 58.

    Karlberg, L. et al. Tackling complexity: understanding the food-energy-environment nexus in Ethiopia’s Lake Tana sub-basin. Water Alternat. 8, 710–734 (2015).

    Google Scholar 

  59. 59.

    Belsky, J. M. & Siebert, S. F. Cultivating cacao implications of sun-grown cacao on local food security and environmental sustainability. Agr. Hum. Values 20, 277–285 (2003).

    Article  Google Scholar 

  60. 60.

    Ceddia, M. G., Sedlacek, S., Bardsley, N. O. & Gomez-y-Paloma, S. Sustainable agricultural intensification or Jevons paradox? The role of public governance in tropical South America. Glob. Environ. Change 23, 1052–1063 (2013).

    Article  Google Scholar 

  61. 61.

    Lavelle, P. et al. Unsustainable landscapes of deforested Amazonia: an analysis of the relationships among landscapes and the social, economic and environmental profiles of farms at different ages following deforestation. Glob. Environ. Change 40, 137–155 (2016).

    Article  Google Scholar 

  62. 62.

    Castella, J.-C. et al. Effects of landscape segregation on livelihood vulnerability: moving from extensive shifting cultivation to rotational agriculture and natural forests in Northern Laos. Human. Ecol. 41, 63–76 (2013).

    Article  Google Scholar 

  63. 63.

    Berg, H., Berg, C. & Nguyen, T. T. Integrated rice-fish farming: safeguarding biodiversity and ecosystem services for sustainable food production in the Mekong Delta. J. Sustain. Agr. 36, 859–872 (2012).

    Article  Google Scholar 

  64. 64.

    Agoramoorthy, G., Hsu, M. J. & Shieh, P. India’s women-led vegetable cultivation improves economic and environmental sustainability. Scott. Geogr. J. 128, 87–99 (2012).

    Article  Google Scholar 

  65. 65.

    Nadal, A. & Rañó, H. G. Environmental impact of changes in production strategies in tropical Mexico. J. Sustain. Agr. 35, 180–207 (2011).

    Article  Google Scholar 

  66. 66.

    Boserup, E. The Economics of Agrarian Change Under Population Pressure (Allan and Urwin, London, 1965).

  67. 67.

    Turner, B. L. & Ali, A. M. S. Induced intensification: agricultural change in Bangladesh with implications for Malthus and Boserup. Proc. Natl Acad. Sci. USA 93, 14984–14991 (1996).

    Article  CAS  Google Scholar 

  68. 68.

    Mertz, O. & Mertens, C. F. Land sparing and land sharing policies in developing countries—drivers and linkages to scientific debates. World Dev. 98, 523–535 (2017).

    Article  Google Scholar 

  69. 69.

    Fischer, J. et al. Land sparing versus land sharing: moving forward. Conserv. Lett. 7, 149–157 (2014).

    Article  Google Scholar 

  70. 70.

    Lachat, C. et al. Dietary species richness as a measure of food biodiversity and nutritional quality of diets. Proc. Natl Acad. Sci. USA 115, 127–132 (2018).

    Article  CAS  Google Scholar 

  71. 71.

    Garnett, T. et al. Sustainable intensification in agriculture: premises and policies. Science 341, 33–34 (2013).

    Article  CAS  Google Scholar 

  72. 72.

    García-Barrios, L. et al. Neotropical forest conservation, agricultural intensification, and rural out-migration: the Mexican experience. BioScience 59, 863–873 (2009).

    Article  Google Scholar 

  73. 73.

    Meyfroidt, P. Approaches and terminology for causal analysis in land systems science. J. Land Use Sci. 11, 501–522 (2016).

    Article  Google Scholar 

  74. 74.

    Alkire, S. & Santos, M. E. Measuring acute poverty in the developing world: robustness and scope of the multidimensional poverty index. World Dev. 59, 251–274 (2014).

    Article  Google Scholar 

  75. 75.

    McGregor, J. A. & Pouw, N. Towards an economics of well-being. Camb. J. Econ. 41, 1123–1142 (2017).

    Google Scholar 

Download references

Acknowledgements

This paper has been developed as part of the project ‘Landscapes in transition: synthesising knowledge on trade-offs between land use changes, ecosystem services and wellbeing’ (grant no. NE/P008356/1), funded with support from the ESPA programme. The ESPA programme (http://www.espa.ac.uk) is funded by the DFID, the ESRC and NERC. The research contributes to the Global Land Programme (https://glp.earth). E.C. acknowledges the financial support of the UAB-Banco de Santander Talent Retention Programme and notes that this work contributes to ICTA-UAB ‘Unit of Excellence’ (MinECo, MDM2015-0552). We thank T. Dale for assistance during the coding process.

Author information

Affiliations

Authors

Contributions

L.V.R., B.C. and A.M. led the design and writing of the study. L.V.R and B.C coded the papers and analysed the data. C.M.R. made Fig. 1. All authors contributed to study design, data interpretation and writing of the manuscript.

Corresponding author

Correspondence to Adrian Martin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary Notes, Methods, Figures 1-4, Table 1, and References 1–16

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rasmussen, L.V., Coolsaet, B., Martin, A. et al. Social-ecological outcomes of agricultural intensification. Nat Sustain 1, 275–282 (2018). https://doi.org/10.1038/s41893-018-0070-8

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing