Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Climate-smart sustainable agriculture in low-to-intermediate shade agroforests

An Author Correction to this article was published on 27 July 2020

This article has been updated


Meeting demands for agricultural production while maintaining ecosystem services, mitigating and adapting to climate change and conserving biodiversity will be a defining challenge of this century. Crop production in agroforests is being widely implemented with the expectation that it can simultaneously meet each of these goals. But trade-offs are inherent to agroforestry and so unless implemented with levels of canopy cover that optimize these trade-offs, this effort in climate-smart, sustainable intensification may simply compromise both production and ecosystem services. By combining simultaneous measurements of production, soil fertility, disease, climate variables, carbon storage and species diversity along a shade-tree cover gradient, here we show that low-to-intermediate shade cocoa agroforests in West Africa do not compromise production, while creating benefits for climate adaptation, climate mitigation and biodiversity. As shade-tree cover increases above approximately 30%, agroforests become increasingly less likely to generate win–win scenarios. Our results demonstrate that agroforests cannot simultaneously maximize production, climate and sustainability goals but might optimise the trade-off between these goals at low-to-intermediate levels of cover.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: The simultaneous costs and benefits of agroforests on production, climate adaptation, climate mitigation and biodiversity along a gradient of shade-tree cover (10–80%).
Fig. 2: The effects of agroforests on agricultural production, climate adaptation, climate mitigation and biodiversity along a gradient of shade-tree cover.

Change history


  1. 1.

    Palm, C. A. et al. Identifying potential synergies and trade-offs for meeting food security and climate change objectives in sub-Saharan Africa. Proc. Natl Acad. Sci. USA 107, 19661–19666 (2010).

    CAS  Google Scholar 

  2. 2.

    Lipper, L. et al. Climate-smart agriculture for food security. Nat. Clim. Change 4, 1068–1072 (2014).

    Google Scholar 

  3. 3.

    Godfray, H. C. J. et al. Food security: The challenge of feeding 9 billion people. Science 327, 812–818 (2010).

    CAS  Google Scholar 

  4. 4.

    Parry, M., Evans, A., Rosegrant, M. W. & Wheeler, T. Climate Change and Hunger: Responding to the Challenge (World Food Programme, Rome, 2009).

  5. 5.

    Morton, J. F. The impact of climate change on smallholder and subsistence agriculture. Proc. Natl Acad. Sci. USA 104, 19680–19685 (2007).

    CAS  Google Scholar 

  6. 6.

    Garnett, T. et al. Sustainable intensification in agriculture: premises and policies. Science 341, 33–34 (2013).

    CAS  Google Scholar 

  7. 7.

    Campbell, B. M., Thornton, P., Zougmoré, R., van Asten, P. & Lipper, L. Sustainable intensification: What is its role in climate smart agriculture? Curr. Opin. Environ. Sustain. 8, 39–43 (2014).

    Google Scholar 

  8. 8.

    Nair, P. R. An Introduction to Agroforestry (Kluwer Academic Publishers, Dordrecht, 1993).

  9. 9.

    Harvey, C. A. et al. Climate-smart landscapes: Opportunities and challenges for integrating adaptation and mitigation in tropical agriculture. Conserv. Lett. 7, 77–90 (2014).

    Google Scholar 

  10. 10.

    Jose, S. Agroforestry for ecosystem services and environmental benefits: an overview. Agrofor. Syst. 76, 1–10 (2009).

    Google Scholar 

  11. 11.

    Vaast, P., Harmand, J.-M., Rapidel, B., Jagoret, P. & Deheuvels, O. in Climate Change and Agriculture Worldwide (ed. Torquebiau, E.) 209–224 (Springer Netherlands, Dordrecht, 2016).

  12. 12.

    Lin, B. B. Agroforestry management as an adaptive strategy against potential microclimate extremes in coffee agriculture. Agric. For. Meteorol. 144, 85–94 (2007).

    Google Scholar 

  13. 13.

    Tscharntke, T. et al. Multifunctional shade-tree management in tropical agroforestry landscapes—a review. J. Appl. Ecol 48, 619–629 (2011).

    Google Scholar 

  14. 14.

    Andres, C. et al. Agroforestry systems can mitigate the severity of cocoa swollen shoot virus disease. Agric. Ecosyst. Environ. 252, 83–92 (2018).

    Google Scholar 

  15. 15.

    Schroth, G., Krauss, U., Gasparotto, L., Duarte Aguilar, J. A. & Vohland, K. Pests and diseases in agroforestry systems of the humid tropics. Agrofor. Syst. 50, 199–241 (2000).

    Google Scholar 

  16. 16.

    Schroth, G. et al. Contribution of agroforests to landscape carbon storage. Mitig. Adapt. Strat. Glob. Change 20, 1175–1190 (2015).

    Google Scholar 

  17. 17.

    Schroth, G. et al. Climate friendliness of cocoa agroforests is compatible with productivity increase. Mitig. Adapt. Strat. Glob. Change 21, 67–80 (2016).

    Google Scholar 

  18. 18.

    Feliciano, D., Ledo, A., Hillier, J. & Nayak, D. R. Which agroforestry options give the greatest soil and above ground carbon benefits in different world regions? Agric. Ecosyst. Environ. 254, 117–129 (2018).

    Google Scholar 

  19. 19.

    Clough, Y. et al. Combining high biodiversity with high yields in tropical agroforests. Proc. Natl Acad. Sci. USA 108, 8311–8316 (2011).

    CAS  Google Scholar 

  20. 20.

    De Beenhouwer, M., Aerts, R. & Honnay, O. A global meta-analysis of the biodiversity and ecosystem service benefits of coffee and cacao agroforestry. Agric. Ecosyst. Environ 175, 1–7 (2013).

    Google Scholar 

  21. 21.

    Sanchez, P. A. Science in agroforestry. Agrofor. Syst. 30, 5–55 (1995).

    Google Scholar 

  22. 22.

    Guo, L. B. & Gifford, R. M. Soil carbon stocks and land use change: A meta analysis. Glob. Change Biol. 8, 345–360 (2002).

    Google Scholar 

  23. 23.

    Gibson, L. et al. Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478, 378–381 (2011).

    CAS  Google Scholar 

  24. 24.

    Läderach, P., Martinez-Valle, A., Schroth, G. & Castro, N. Predicting the future climatic suitability for cocoa farming of the world’s leading producer countries, Ghana and Côte d’Ivoire. Climatic Change 119, 841–854 (2013).

    Google Scholar 

  25. 25.

    Schroth, G., Laderach, P., Martinez-Valle, A. I., Bunn, C. & Jassogne, L. Vulnerability to climate change of cocoa in West Africa: patterns, opportunities and limits to adaptation. Sci. Total Environ. 556, 231–241 (2016).

    CAS  Google Scholar 

  26. 26.

    Franzen, M. & Borgerhoff Mulder, M. Ecological, economic and social perspectives on cocoa production worldwide. Biodivers. Conserv. 16, 3835–3849 (2007).

    Google Scholar 

  27. 27.

    Phalan, B., Onial, M., Balmford, A. & Green, R. E. Reconciling food production and biodiversity conservation: Land sharing and land sparing compared. Science 333, 1289–1291 (2011).

    CAS  Google Scholar 

  28. 28.

    Blaser, W. J., Oppong, J., Yeboah, E. & Six, J. Shade trees have limited benefits for soil fertility in cocoa agroforests. Agric. Ecosyst. Environ. 243, 83–91 (2017).

    CAS  Google Scholar 

  29. 29.

    Bisseleua, D. H. B., Missoup, A. D. & Vidal, S. Biodiversity conservation, ecosystem functioning, and economic incentives under cocoa agroforestry intensification. Conserv. Biol. 23, 1176–1184 (2009).

    CAS  Google Scholar 

  30. 30.

    Zuidema, P. A., Leffelaar, P. A., Gerritsma, W., Mommer, L. & Anten, N. P. R. A physiological production model for cocoa (Theobroma cacao): model presentation, validation and application. Agric. Syst. 84, 195–225 (2005).

    Google Scholar 

  31. 31.

    Jacobi, J. et al. Carbon stocks, tree diversity, and the role of organic certification in different cocoa production systems in Alto Beni, Bolivia. Agrofor. Syst. 88, 1117–1132 (2014).

    Google Scholar 

  32. 32.

    Steffan-Dewenter, I. et al. Tradeoffs between income, biodiversity, and ecosystem functioning during tropical rainforest conversion and agroforestry intensification. Proc. Natl Acad. Sci. USA 104, 4973–4978 (2007).

    CAS  Google Scholar 

  33. 33.

    Wartenberg, A. C. et al. Does shade tree diversity increase soil fertility in cocoa plantations? Agric. Ecosyst. Environ. 248, 190–199 (2017).

    Google Scholar 

  34. 34.

    Ruf, F. O. The myth of complex cocoa agroforests: The case of Ghana. Hum. Ecol. 39, 373–388 (2011).

    Google Scholar 

  35. 35.

    Gockowski, J., Afari-Sefa, V., Sarpong, D. B., Osei-Asare, Y. B. & Agyeman, N. F. Improving the productivity and income of Ghanaian cocoa farmers while maintaining environmental services: What role for certification? Int. J. Agric. Sustain. 11, 331–346 (2013).

    Google Scholar 

  36. 36.

    Abdulai, I. et al. Cocoa agroforestry is less resilient to sub-optimal and extreme climate than cocoa in full sun. Glob. Change Biol. 24, 273–286 (2018).

    Google Scholar 

  37. 37.

    Carr, M. K. V. & Lockwood, G. The water relations and irrigation requirements of cocoa (Theobroma cacao L.): a review. Exp. Agric 47, 653–676 (2011).

    Google Scholar 

  38. 38.

    Schroth, G., Läderach, P., Martinez-Valle, A. I. & Bunn, C. From site-level to regional adaptation planning for tropical commodities: cocoa in West Africa. Mitig. Adapt. Strat. Glob. Change 22, 903–927 (2017).

    Google Scholar 

  39. 39.

    Asase, A., Asitoakor, B. K. & Ekpe, P. K. Linkages between tree diversity and carbon stocks in unlogged and logged West African tropical forests. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 8, 217–230 (2012).

    Google Scholar 

  40. 40.

    Paustian, K. et al. Climate-smart soils. Nature 532, 49–57 (2016).

    CAS  Google Scholar 

  41. 41.

    Jagoret, P., Michel-Dounias, I., Snoeck, D., Ngnogue, H. T. & Malezieux, E. Afforestation of savannah with cocoa agroforestry systems: A small-farmer innovation in central Cameroon. Agrofor. Syst. 86, 493–504 (2012).

    Google Scholar 

  42. 42.

    Clough, Y., Putra, D. D., Pitopang, R. & Tscharntke, T. Local and landscape factors determine functional bird diversity in Indonesian cacao agroforestry. Biol. Conserv. 142, 1032–1041 (2009).

    Google Scholar 

  43. 43.

    Abrahamczyk, S., Kessler, M., Dwi Putra, D., Waltert, M. & Tscharntke, T. The value of differently managed cacao plantations for forest bird conservation in Sulawesi, Indonesia. Bird. Conserv. Int. 18, 349–362 (2008).

    Google Scholar 

  44. 44.

    Teuscher, M. et al. Trade-offs between bird diversity and abundance, yields and revenue in smallholder oil palm plantations in Sumatra, Indonesia. Biol. Conserv. 186, 306–318 (2015).

    Google Scholar 

  45. 45.

    Kleijn, D. et al. On the relationship between farmland biodiversity and land-use intensity in Europe. Proc. R. Soc. B Biol. Sci. 276, 903–909 (2009).

    CAS  Google Scholar 

  46. 46.

    Nilsson, F. O. L. Biodiversity on Swedish pastures: Estimating biodiversity production costs. J. Environ. Manag. 90, 131–143 (2009).

    Google Scholar 

  47. 47.

    Hulme, M. F. et al. Conserving the birds of Uganda’s banana-coffee arc: land sparing and land sharing compared. PloS ONE 8, e54597 (2013).

    CAS  Google Scholar 

  48. 48.

    Bhagwat, S. A., Willis, K. J., Birks, H. J. B. & Whittaker, R. J. Agroforestry: a refuge for tropical biodiversity? Trends Ecol. Evol. 23, 261–267 (2008).

    Google Scholar 

  49. 49.

    Lucey, J. M. & Hill, J. K. Spillover of insects from rain forest into adjacent oil palm plantations. Biotropica 44, 368–377 (2012).

    Google Scholar 

  50. 50.

    Asare, R. & Ræbild, A. Tree diversity and canopy cover in cocoa systems in Ghana. New For. 47, 287–302 (2016).

    Google Scholar 

  51. 51.

    Cai, W. et al. Increasing frequency of extreme El Niño eve’nts due to greenhouse warming. Nat. Clim. Change 4, 111 (2014).

    CAS  Google Scholar 

  52. 52.

    Hutto, R. L., Pletschet, S. M. & Hendricks, P. A fixed-radius point count method for nonbreeding and breeding season use. Auk 103, 593–602 (1986).

    Google Scholar 

  53. 53.

    Parker, T. A. III On the use of tape recorders in avifaunal surveys. Auk 108, 443–444 (1991).

    Google Scholar 

  54. 54.

    Leather, S. R. Insect Sampling in Forest Ecosystems (Blackwell, Oxford, 2005).

  55. 55.

    Ferreira, R. B., Beard, K. H. & Crump, M. L. Breeding guild determines frog distributions in response to edge effects and habitat conversion in the Brazil’s Atlantic Forest. PLoS ONE 11, e0156781 (2016).

    Google Scholar 

  56. 56.

    Kraft, N. J. B. et al. Disentangling the drivers of β diversity along latitudinal and elevational gradients. Science 333, 1755–1758 (2011).

    CAS  Google Scholar 

  57. 57.

    Quinn, G. P. & Keough, M. J. Experimental Design and Data Analysis for Biologists (Cambridge Univ. Press, Cambridge, 2002).

Download references


We thank K. Oppong and D. Oppong for assistance with fieldwork, and farmers in the study region for allowing access to their farms. We further acknowledge J. O. Fening for institutional support provided by the Soil Research Institute of Ghana. We thank B. Jahn-Humphrey, G. Asamoah, B. Studer, G. Quansah, T. Afreh and M. Amponsah for laboratory assistance. C. Ofori kindly helped us with the identification of frogs. This study was funded by the Sustainable Agroecosystems Group at ETH Zurich and a grant from the Swiss-African Research Cooperation (SARECO) funded by the University of Basel, Switzerland.

Author information




W.J.B., S.P.H. and J.S. designed the research. W.J.B., J.O., J.L. and E.Y. performed the research. W.J.B., S.P.H. and J.S. analysed and interpreted the data. W.J.B. wrote the first draft and S.P.H. and J.S. contributed to revisions.

Corresponding author

Correspondence to W. J. Blaser.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs 1–3, Supplementary Tables 1–6, Supplementary Methods, Supplementary References

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Blaser, W.J., Oppong, J., Hart, S.P. et al. Climate-smart sustainable agriculture in low-to-intermediate shade agroforests. Nat Sustain 1, 234–239 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing