Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of nanotechnology in tackling global water challenges

Abstract

Sustainable provision of safe, clean and adequate water supply is a global challenge. Water treatment and desalination technologies remain chemically and energy intensive, ineffective in removing key trace contaminants, and poorly suited to deployment in decentralized (distributed) water treatment systems globally. Several recent efforts have sought to leverage the reactive and tunable properties of nanomaterials to address these technological shortcomings. This Review assesses the potential applications of nanomaterials in advancing sustainable water treatment systems and proposes ways to evaluate the environmental risks and social acceptance of nanotechnology-enabled water treatment processes. Future areas of research necessary to realize safe deployment of promising nanomaterial applications are also identified.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ENM-enabled disinfection processes.
Fig. 2: Nanotechnology-based platforms for decontamination processes.
Fig. 3: Nanotechnology-enabled reverse osmosis (RO) for desalination and water reuse to efficiently expand potable water supplies.
Fig. 4: Environmental implications of ENMs in water treatment throughout their life cycle.
Fig. 5: Benefits and risks of deploying ENMs in drinking-water treatment.

Similar content being viewed by others

References

  1. Shannon, M. A. et al. Science and technology for water purification in the coming decades. Nature 452, 301–310 (2008).

    Article  CAS  Google Scholar 

  2. Becker, G. S. in Human Capital: A Theoretical and Empirical Analysis with Special Reference to Education 3rd edn, 15–28 (Univ. Chicago Press, 1994).

  3. Costanza, R. & Daly, H. E. Natural capital and sustainable development. Conserv. Biol. 6, 37–46 (1992).

    Article  Google Scholar 

  4. Tal, A. Seeking sustainability: Israel’s evolving water management strategy. Science 313, 1081–1084 (2006).

    Article  CAS  Google Scholar 

  5. Mauter, M. S. & Elimelech, M. Environmental applications of carbon-based nanomaterials. Environ. Sci. Technol. 42, 5843–5859 (2008).

    Article  CAS  Google Scholar 

  6. Matson, P., Clark, W. C. & Andersson, K. Pursuing Sustainability: A Guide to the Science and Practice (Princeton Univ. Press, 2016).

  7. Progress on Drinking Water, Sanitation and Hygiene: 2017 Update and SDG Baselines (World Health Organization (WHO) and United Nations Children’s Fund (UNICEF), 2017).

  8. US Environmental Protection Agency. Drinking water contaminant candidate list. Fed. Reg. 81, 81099–81114 (2016).

  9. Li, Q. et al. Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res .42, 4591–4602 (2008).

    Article  CAS  Google Scholar 

  10. Bhadra, C. M. et al. Antibacterial titanium nano-patterned arrays inspired by dragonfly wings. Sci. Rep. 5, 16817 (2015).

    Article  CAS  Google Scholar 

  11. Ivanova, E. P. et al. Bactericidal activity of black silicon. Nat. Commun. 4, 2838 (2013).

    Article  CAS  Google Scholar 

  12. Gazit, E. Self-assembled peptide nanostructures: the design of molecular building blocks and their technological utilization. Chem. Soc. Rev. 36, 1263–1269 (2007).

    Article  CAS  Google Scholar 

  13. Kang, S., Pinault, M., Pfefferle, L. D. & Elimelech, M. Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir 23, 8670–8673 (2007).

    Article  CAS  Google Scholar 

  14. Wang, Y. et al. High-performance capacitive deionization disinfection of water with graphene oxide-graft-quaternized chitosan nanohybrid electrode coating. ACS Nano 9, 10142–10157 (2015).

    Article  CAS  Google Scholar 

  15. Cho, M., Chung, H., Choi, W. & Yoon, J. Different inactivation behaviors of MS-2 phage and Escherichia coli in TiO2 photocatalytic disinfection. Appl. Environ. Microbiol. 71, 270–275 (2005).

    Article  CAS  Google Scholar 

  16. Liu, C. et al. Rapid water disinfection using vertically aligned MoS2 nanofilms and visible light. Nat. Nanotechnol. 11, 1098–1104 (2016).

    Article  CAS  Google Scholar 

  17. Zhang, D. Q., Li, G. S. & Yu, J. C. Inorganic materials for photocatalytic water disinfection. J. Mater. Chem. 20, 4529–4536 (2010).

    Article  CAS  Google Scholar 

  18. Xiu, Z. M., Zhang, Q. B., Puppala, H. L., Colvin, V. L. & Alvarez, P. J. J. Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett. 12, 4271–4275 (2012).

    Article  CAS  Google Scholar 

  19. Propato, M. & Uber, J. G. Vulnerability of water distribution systems to pathogen intrusion: How effective is a disinfectant residual? Environ. Sci. Technol. 38, 3713–3722 (2004).

    Article  CAS  Google Scholar 

  20. Raghupathi, K. R., Koodali, R. T. & Manna, A. C. Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir 27, 4020–4028 (2011).

    Article  CAS  Google Scholar 

  21. Yu, J. C. et al. Efficient visible-light-induced photocatalytic disinfection on sulfur-doped nanocrystalline titania. Environ. Sci. Technol. 39, 1175–1179 (2005).

    Article  CAS  Google Scholar 

  22. Lee, I. et al. Photochemical and antimicrobial properties of novel C60 derivatives in aqueous systems. Environ. Sci. Technol. 43, 6604–6610 (2009).

    Article  CAS  Google Scholar 

  23. Cho, M., Snow, S. D., Hughes, J. B. & Kim, J. H. Escherichia coli inactivation by UVC-irradiated C60: kinetics and mechanisms. Environ. Sci. Technol. 45, 9627–9633 (2011).

    Article  CAS  Google Scholar 

  24. Liu, S. et al. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress. ACS Nano 5, 6971–6980 (2011).

    Article  CAS  Google Scholar 

  25. Zasloff, M. Antimicrobial peptides of multicellular organisms. Nature 415, 389–395 (2002).

    Article  CAS  Google Scholar 

  26. Lu, X. et al. Enhanced antibacterial activity through the controlled alignment of graphene oxide nanosheets. Proc. Natl. Acad. Sci. USA 114, E9793–E9801 (2017).

    Article  CAS  Google Scholar 

  27. Snow, S. D., Park, K. & Kim, J. H. Cationic fullerene aggregates with unprecedented virus photoinactivation efficiencies in water. Environ. Sci. Tech. Lett. 1, 290–294 (2014).

    Article  CAS  Google Scholar 

  28. Schwarzenbach, R. P. et al. The challenge of micropollutants in aquatic systems. Science 313, 1072 (2006).

    Article  CAS  Google Scholar 

  29. Huber, M. M., Canonica, S., Park, G. Y. & von Gunten, U. Oxidation of pharmaceuticals during ozonation and advanced oxidation processes. Environ. Sci. Technol. 37, 1016–1024 (2003).

    Article  CAS  Google Scholar 

  30. Ashby, M. F., Ferreira, P. J. & Schodek, D. L. in Nanomaterials, Nanotechnologies and Design 177–197 (Butterworth-Heinemann, 2009).

  31. Chiu, C. Y. et al. Platinum nanocrystals selectively shaped using facet-specific peptide sequences. Nat. Chem. 3, 393–399 (2011).

    Article  CAS  Google Scholar 

  32. Waychunas, G. A., Kim, C. S. & Banfield, J. F. Nanoparticulate iron oxide minerals in soils and sediments: unique properties and contaminant scavenging mechanisms. J. Nanopart. Res. 7, 409–433 (2005).

    Article  CAS  Google Scholar 

  33. Madden, A. S., Hochella, M. F. & Luxton, T. P. Insights for size-dependent reactivity of hematite nanomineral surfaces through Cu2+ sorption. Geochim. Cosmochim. Acta 70, 4095–4104 (2006).

    Article  CAS  Google Scholar 

  34. Cai, W. Q., Yu, J. G., Cheng, B., Su, B. L. & Jaroniec, M. Synthesis of boehmite hollow core/shell and hollow microspheres via sodium tartrate-mediated phase transformation and their enhanced adsorption performance in water treatment. J. Phys. Chem. C. 113, 14739–14746 (2009).

    Article  CAS  Google Scholar 

  35. Pan, B. & Xing, B. Adsorption mechanisms of organic chemicals on carbon nanotubes. Environ. Sci. Technol. 42, 9005–9013 (2008).

    Article  CAS  Google Scholar 

  36. Wang, J., Chen, Z. & Chen, B. Adsorption of polycyclic aromatic hydrocarbons by graphene and graphene oxide nanosheets. Environ. Sci. Technol. 48, 4817–4825 (2014).

    Article  CAS  Google Scholar 

  37. Hua, M. et al. Heavy metal removal from water/wastewater by nanosized metal oxides: A review. J. Hazard. Mater. 211–212, 317–331 (2012).

    Article  CAS  Google Scholar 

  38. Lounsbury, A. W., Yamani, J. S., Johnston, C. P., Larese-Casanova, P. & Zimmerman, J. B. The role of counter ions in nano-hematite synthesis: Implications for surface area and selenium adsorption capacity. J. Hazard. Mater. 310, 117–124 (2016).

    Article  CAS  Google Scholar 

  39. Vuković, G. D. et al. Removal of cadmium from aqueous solutions by oxidized and ethylenediamine-functionalized multi-walled carbon nanotubes. Chem. Eng. J. 157, 238–248 (2010).

    Article  CAS  Google Scholar 

  40. Yuan, Q. et al. Facet-dependent selective adsorption of Mn-doped α-Fe2O3 nanocrystals toward heavy-metal ions. Chem. Mater. 29, 10198–10205 (2017).

    Article  CAS  Google Scholar 

  41. Eckelman, M. J., Mauter, M. S., Isaacs, J. A. & Elimelech, M. New perspectives on nanomaterial aquatic ecotoxicity: production impacts exceed direct exposure impacts for carbon nanotoubes. Environ. Sci. Technol. 46, 2902–2910 (2012).

    Article  CAS  Google Scholar 

  42. Apul, O. G., Wang, Q., Zhou, Y. & Karanfil, T. Adsorption of aromatic organic contaminants by graphene nanosheets: Comparison with carbon nanotubes and activated carbon. Water Res .47, 1648–1654 (2013).

    Article  CAS  Google Scholar 

  43. Beless, B., Rifai, H. S. & Rodrigues, D. F. Efficacy of carbonaceous materials for sorbing polychlorinated biphenyls from aqueous solution. Environ. Sci. Technol. 48, 10372–10379 (2014).

    Article  CAS  Google Scholar 

  44. Cooper, A. M., Hristovski, K. D., Möller, T., Westerhoff, P. & Sylvester, P. The effect of carbon type on arsenic and trichloroethylene removal capabilities of iron (hydr)oxide nanoparticle-impregnated granulated activated carbons. J. Hazard. Mater. 183, 381–388 (2010).

    Article  CAS  Google Scholar 

  45. Farrell, J. W. et al. Arsenic removal by nanoscale magnetite in Guanajuato, Mexico. Environ. Eng. Sci. 31, 393–402 (2014).

    Article  CAS  Google Scholar 

  46. Savage, N. & Diallo, M. S. Nanomaterials and water purification: opportunities and challenges. J. Nanopart. Res. 7, 331–342 (2005).

    Article  CAS  Google Scholar 

  47. Lee, J. et al. C60 aminofullerene immobilized on silica as a visible-light-activated photocatalyst. Environ. Sci. Technol. 44, 9488–9495 (2010).

    Article  CAS  Google Scholar 

  48. Oulton, R. et al. Hydroxyl radical formation during ozonation of multiwalled carbon nanotubes: performance optimization and demonstration of a reactive CNT filter. Environ. Sci. Technol. 49, 3687–3697 (2015).

    Article  CAS  Google Scholar 

  49. Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K. & Taga, Y. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293, 269–271 (2001).

    Article  CAS  Google Scholar 

  50. El-Sheikh, S. M. et al. Tailored synthesis of anatase–brookite heterojunction photocatalysts for degradation of cylindrospermopsin under UV–Vis light. Chem. Eng. J. 310, 428–436 (2017).

    Article  CAS  Google Scholar 

  51. Liu, S., Yu, J. & Jaroniec, M. Tunable photocatalytic selectivity of hollow TiO2 microspheres composed of anatase polyhedra with exposed {001} facets. J. Am. Chem. Soc. 132, 11914–11916 (2010).

    Article  CAS  Google Scholar 

  52. Su, J. et al. Highly efficient and recyclable triple-shelled Ag@Fe3O4@SiO2@TiO2 photocatalysts for degradation of organic pollutants and reduction of hexavalent chromium ions. Nanoscale .6, 5181–5192 (2014).

    Article  CAS  Google Scholar 

  53. Horovitz, I. et al. Carbamazepine degradation using a N-doped TiO2 coated photocatalytic membrane reactor: Influence of physical parameters. J. Hazard. Mater. 310, 98–107 (2016).

    Article  CAS  Google Scholar 

  54. Benotti, M. J., Stanford, B. D., Wert, E. C. & Snyder, S. A. Evaluation of a photocatalytic reactor membrane pilot system for the removal of pharmaceuticals and endocrine disrupting compounds from water. Water Res .43, 1513–1522 (2009).

    Article  CAS  Google Scholar 

  55. Cates, E. L. Photocatalytic water treatment: So where are we going with this? Environ. Sci. Technol. 51, 757–758 (2017).

    Article  CAS  Google Scholar 

  56. Roco, M. C. The long view of nanotechnology development: the National Nanotechnology Initiative at 10 years. J. Nanopart. Res 13, 427–445 (2011).

    Article  Google Scholar 

  57. Elimelech, M. & Phillip, W. A. The future of seawater desalination: energy, technology, and the environment. Science 333, 712–717 (2011).

    Article  CAS  Google Scholar 

  58. Werber, J. R., Osuji, C. O. & Elimelech, M. Materials for next-generation desalination and water purification membranes. Nat. Rev. Mater. 1, 16018 (2016).

    Article  CAS  Google Scholar 

  59. Werber, J. R., Deshmukh, A. & Elimelech, M. The critical need for increased selectivity, not increased water permeability, for desalination membranes. Environ. Sci. Tech. Lett. 3, 112–120 (2016).

    Article  CAS  Google Scholar 

  60. Jeong, B. H. et al. Interfacial polymerization of thin film nanocomposites: A new concept for reverse osmosis membranes. J. Membr. Sci. 294, 1–7 (2007).

    Article  CAS  Google Scholar 

  61. Liu, Y. & Chen, X. High permeability and salt rejection reverse osmosis by a zeolite nano-membrane. Phys. Chem. Chem. Phys. 15, 6817–6824 (2013).

    Article  CAS  Google Scholar 

  62. Joshi, R. K. et al. Precise and ultrafast molecular sieving through graphene oxide membranes. Science 343, 752–754 (2014).

    Article  CAS  Google Scholar 

  63. Majumder, M., Chopra, N., Andrews, R. & Hinds, B. J. Nanoscale hydrodynamics: enhanced flow in carbon nanotubes. Nature 438, 44 (2005).

    Article  CAS  Google Scholar 

  64. Holt, J. K. et al. Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312, 1034–1037 (2006).

    Article  CAS  Google Scholar 

  65. Corry, B. Designing carbon nanotube membranes for efficient water desalination. J. Phys. Chem. B .112, 1427–1434 (2008).

    Article  CAS  Google Scholar 

  66. Mi, B. Graphene oxide membranes for ionic and molecular sieving. Science 343, 740–742 (2014).

    Article  CAS  Google Scholar 

  67. Amadei, C. A. & Vecitis, C. D. How to increase the signal-to-noise ratio of graphene oxide membrane research. J. Phys. Chem. Lett. 7, 3791–3797 (2016).

    Article  CAS  Google Scholar 

  68. Wei, N., Peng, X. & Xu, Z. Breakdown of fast water transport in graphene oxides. Phys. Rev. E. 89, 012113 (2014).

    Article  CAS  Google Scholar 

  69. Zhou, X. et al. Self-assembling subnanometer pores with unusual mass-transport properties. Nat. Commun. 3, 949 (2012).

    Article  CAS  Google Scholar 

  70. Licsandru, E. et al. Salt-excluding artificial water channels exhibiting enhanced dipolar water and proton translocation. J. Am. Chem. Soc. 138, 5403–5409 (2016).

    Article  CAS  Google Scholar 

  71. Zhou, M. et al. New type of membrane material for water desalination based on a cross-linked bicontinuous cubic lyotropic liquid crystal assembly. J. Am. Chem. Soc. 129, 9574–9575 (2007).

    Article  CAS  Google Scholar 

  72. Shen, Y. X. et al. Highly permeable artificial water channels that can self-assemble into two-dimensional arrays. Proc. Natl Acad. Sci. USA 112, 9810–9815 (2015).

    Article  CAS  Google Scholar 

  73. Perreault, F., Tousley, M. E. & Elimelech, M. Thin-film composite polyamide membranes functionalized with biocidal graphene oxide nanosheets. Environ. Sci. Tech. Lett. 1, 71–76 (2014).

    Article  CAS  Google Scholar 

  74. Tiraferri, A., Vecitis, C. D. & Elimelech, M. Covalent binding of single-walled carbon nanotubes to polyamide membranes for antimicrobial surface properties. ACS Appl. Mater. Inter. 3, 2869–2877 (2011).

    Article  CAS  Google Scholar 

  75. Liu, C., Lee, J., Small, C., Ma, J. & Elimelech, M. Comparison of organic fouling resistance of thin-film composite membranes modified by hydrophilic silica nanoparticles and zwitterionic polymer brushes. J. Membr. Sci. 544, 135–142 (2017).

    Article  CAS  Google Scholar 

  76. Oberdörster, G., Oberdörster, E. & Oberdörster, J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 113, 823–839 (2005).

    Article  CAS  Google Scholar 

  77. Maynard, A. D., Warheit, D. B. & Philbert, M. A. The new toxicology of sophisticated materials: nanotoxicology and beyond. Toxicol. Sci. 120(Suppl.), S109–129 (2011).

    Article  CAS  Google Scholar 

  78. Bondarenko, O. et al. Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. Arch. Toxicol. 87, 1181–1200 (2013).

    Article  CAS  Google Scholar 

  79. Nel, A. E. et al. Understanding biophysicochemical interactions at the nano-bio interface. Nat. Mater. 8, 543–557 (2009).

    Article  CAS  Google Scholar 

  80. Gilbertson, L. M. et al. Shape-dependent surface reactivity and antimicrobial activity of nano-cupric oxide. Environ. Sci. Technol. 50, 3975–3984 (2016).

    Article  CAS  Google Scholar 

  81. Perreault, F., de Faria, A. F., Nejati, S. & Elimelech, M. Antimicrobial properties of graphene oxide nanosheets: Why size matters. ACS Nano 9, 7226–7236 (2015).

    Article  CAS  Google Scholar 

  82. Pasquini, L. M., Hashmi, S. M., Sommer, T. J., Elimelech, M. & Zimmerman, J. B. Impact of surface functionalization on bacterial cytotoxicity of single-walled carbon nanotubes. Environ. Sci. Technol. 46, 6297–6305 (2012).

    Article  CAS  Google Scholar 

  83. Hull, M., Kennedy, A. J., Detzel, C., Vikesland, P. & Chappell, M. A. Moving beyond mass: the unmet need to consider dose metrics in environmental nanotoxicology studies. Environ. Sci. Technol. 46, 10881–10882 (2012).

    Article  CAS  Google Scholar 

  84. Petersen, E. J. et al. Adapting OECD aquatic toxicity tests for use with manufactured nanomaterials: Key issues and consensus recommendations. Environ. Sci. Technol. 49, 9532–9547 (2015).

    Article  CAS  Google Scholar 

  85. Nelson, B. C. et al. NIST gold nanoparticle reference materials do not induce oxidative DNA damage. Nanotoxicology 7, 21–29 (2013).

    Article  CAS  Google Scholar 

  86. Taurozzi, J. S., Hackley, V. A. & Wiesner, M. R. A standardised approach for the dispersion of titanium dioxide nanoparticles in biological media. Nanotoxicology 7, 389–401 (2013).

    Article  CAS  Google Scholar 

  87. DeLoid, G. et al. Estimating the effective density of engineered nanomaterials for in vitro dosimetry. Nat. Commun. 5, 3514 (2014).

    Article  CAS  Google Scholar 

  88. DeLoid, G. M., Cohen, J. M., Pyrgiotakis, G. & Demokritou, P. Preparation, characterization, and in vitro dosimetry of dispersed, engineered nanomaterials. Nat. Protoc. 12, 355–371 (2017).

    Article  CAS  Google Scholar 

  89. Holden, P. A. et al. Considerations of environmentally relevant test conditions for improved evaluation of ecological hazards of engineered nanomaterials. Environ. Sci. Technol. 50, 6124–6145 (2016).

    Article  CAS  Google Scholar 

  90. Levard, C., Hotze, E. M., Lowry, G. V. & Brown, G. E. Jr. Environmental transformations of silver nanoparticles: Impact on stability and toxicity. Environ. Sci. Technol. 46, 6900–6914 (2012).

    Article  CAS  Google Scholar 

  91. Lowry, G. V., Gregory, K. B., Apte, S. C. & Lead, J. R. Transformations of nanomaterials in the environment. Environ. Sci. Technol. 46, 6893–6899 (2012).

    Article  CAS  Google Scholar 

  92. Dale, A. L. et al. Modeling nanomaterial environmental fate in aquatic systems. Environ. Sci. Technol. 49, 2587–2593 (2015).

    Article  CAS  Google Scholar 

  93. Keller, A. A., McFerran, S., Lazareva, A. & Suh, S. Global life cycle releases of engineered nanomaterials. J. Nanopart. Res. 15, 1692–1709 (2013).

    Article  Google Scholar 

  94. Sun, T. Y. et al. Probabilistic modelling of engineered nanomaterial emissions to the environment: a spatio-temporal approach. Environ. Sci. Nano 2, 340–351 (2015).

    Article  CAS  Google Scholar 

  95. Coll, C. et al. Probabilistic environmental risk assessment of five nanomaterials (nano-TiO2, nano-Ag, nano-ZnO, CNT, and fullerenes). Nanotoxicology 10, 436–444 (2016).

    Article  CAS  Google Scholar 

  96. Westerhoff, P., Alvarez, P. J. J., Li, Q., Gardea-Torresdey, J. & Zimmerman, J. Overcoming implementation barriers for nanotechnology in drinking water treatment. Environ. Sci. Nano 3, 1241–1253 (2016).

    Article  CAS  Google Scholar 

  97. Ma, R. et al. Fate of zinc oxide and silver nanoparticles in a pilot wastewater treatment plant and in processed biosolids. Environ. Sci. Technol. 48, 104–112 (2014).

    Article  CAS  Google Scholar 

  98. Conway, J. R., Adeleye, A. S., Gardea-Torresdey, J. & Keller, A. A. Aggregation, dissolution, and transformation of copper nanoparticles in natural waters. Environ. Sci. Technol. 49, 2749–2756 (2015).

    Article  CAS  Google Scholar 

  99. Grillo, R., Rosa, A. H. & Fraceto, L. F. Engineered nanoparticles and organic matter: A review of the state-of-the-art. Chemosphere 119, 608–619 (2015).

    Article  CAS  Google Scholar 

  100. Garg, S., Rong, H., Miller, C. J. & Waite, T. D. Oxidative dissolution of silver nanoparticles by chlorine: implications to silver nanoparticle fate and toxicity. Environ. Sci. Technol. 50, 3890–3896 (2016).

    Article  CAS  Google Scholar 

  101. Du, T. et al. Photochlorination-induced transformation of graphene oxide: Mechanism and environmental fate. Water Res 124, 372–380 (2017).

    Article  CAS  Google Scholar 

  102. Notter, D. A., Mitrano, D. M. & Nowack, B. Are nanosized or dissolved metals more toxic in the environment? A meta-analysis. Environ. Toxicol. Chem. 33, 2733–2739 (2014).

    Article  CAS  Google Scholar 

  103. van der Zande, M. et al. Distribution, elimination, and toxicity of silver nanoparticles and silver ions in rats after 28-day oral exposure. ACS Nano 6, 7427–7442 (2012).

    Article  CAS  Google Scholar 

  104. Buesen, R. et al. Effects of SiO2, ZrO2, and BaSO4 nanomaterials with or without surface functionalization upon 28-day oral exposure to rats. Arch. Toxicol. 88, 1881–1906 (2014).

    Article  CAS  Google Scholar 

  105. Alison, A., Stuart, A., Alan, P. & Clare, W. The framing of nanotechnologies in the British newspaper press. Sci. Commun. 27, 200–220 (2005).

    Article  Google Scholar 

  106. Cobb, M. D. & Macoubrie, J. Public perceptions about nanotechnology: Risks, benefits and trust. J. Nanopart. Res. 6, 395–405 (2004).

    Article  Google Scholar 

  107. Mitrano, D. M. & Nowack, B. The need for a life-cycle based aging paradigm for nanomaterials: importance of real-world test systems to identify realistic particle transformations. Nanotechnology 28, 072001 (2017).

    Article  CAS  Google Scholar 

  108. Stacey, H. et al. Measuring nanomaterial release from carbon nanotube composites: Review of the state of the science. J. Phys. Conf. Ser. 617, 012026 (2015).

    Article  CAS  Google Scholar 

  109. Dahlben, L. J., Eckelman, M. J., Hakimian, A., Somu, S. & Isaacs, J. A. Environmental life cycle assessment of a carbon nanotube-enabled semiconductor device. Environ. Sci. Technol. 47, 8471–8478 (2013).

    Article  CAS  Google Scholar 

  110. Anderson, P., Wiener, J., Graham, J. & Weiner, J. Risk versus Risk: Tradeoffs in Protecting Health and the Environment (Harvard Univ. Press, Cambridge, 1995).

  111. Eckelman, M. J., Mauter, M. S., Isaacs, J. A. & Elimelech, M. New perspectives on nanomaterial aquatic ecotoxicity: production impacts exceed direct exposure impacts for carbon nanotoubes. Environ. Sci. Technol. 46, 2902–2910 (2012).

    Article  CAS  Google Scholar 

  112. Gingerich, D. B. & Mauter, M. S. Air emissions damages from municipal drinking water treatment under current and proposed regulatory standards. Environ. Sci. Technol. 51, 10299–10306 (2017).

    Article  CAS  Google Scholar 

  113. Hering, J. G., Waite, T. D., Luthy, R. G., Drewes, Jr. E. & Sedlak, D. L. A changing framework for urban water systems. Environ. Sci. Technol. 47, 10721–10726 (2013).

    Article  CAS  Google Scholar 

  114. Kiparsky, M., Sedlak, D. L., Thompson, B. H. Jr. & Truffer, B. The innovation deficit in urban water: The need for an integrated perspective on institutions, organizations, and technology. Environ. Eng. Sci. 30, 395–408 (2013).

    Article  CAS  Google Scholar 

  115. Brame, J., Li, Q. L. & Alvarez, P. J. J. Nanotechnology-enabled water treatment and reuse: emerging opportunities and challenges for developing countries. Trends Food Sci. Tech. 22, 618–624 (2011).

    Article  CAS  Google Scholar 

  116. Ren, D., Colosi, L. M. & Smith, J. A. Evaluating the sustainability of ceramic filters for point-of-use drinking water treatment. Environ. Sci. Technol. 47, 11206–11213 (2013).

    Article  CAS  Google Scholar 

  117. Saidi, T. & Zeiss, R. Investigating promises of nanotechnology for development: A case study of the travelling of smart nano water filter in Zimbabwe. Technol. Soc. 46, 40–48 (2016).

    Article  Google Scholar 

  118. Novak, P. J. et al. Innovation promoted by regulatory flexibility. Environ. Sci. Technol. 49, 13908–13909 (2015).

    Article  CAS  Google Scholar 

  119. Coglianese, C. & Lazer, D. Management‐based regulation: Prescribing private management to achieve public goals. Law Soc. Rev. 37, 691–730 (2003).

    Article  Google Scholar 

  120. Qu, X., Brame, J., Li, Q. & Alvarez, P. J. J. Nanotechnology for a safe and sustainable water supply: enabling integrated water treatment and reuse. Acc. Chem. Res. 46, 834–843 (2013).

    Article  CAS  Google Scholar 

  121. Kraus, N., Malmfors, T. & Slovic, P. Intuitive toxicology — expert and lay judgments of chemical risks. Risk Anal. 12, 215–232 (1992).

    Article  Google Scholar 

  122. Scheufele, D. A. et al. Scientists worry about some risks more than the public. Nat. Nanotechnol. 2, 732–734 (2007).

    Article  CAS  Google Scholar 

  123. van Dijk, H., Fischer, A. R. H., Marvin, H. J. P. & van Trijp, H. C. M. Determinants of stakeholders’ attitudes towards a new technology: nanotechnology applications for food, water, energy and medicine. J. Risk Res. 20, 277–298 (2015).

    Article  Google Scholar 

  124. Loeb, S., Li, C. & Kim, J.-H. Solar photothermal disinfection using broadband-light absorbing gold nanoparticles and carbon black. Environ. Sci. Technol. 52, 205–213 (2018).

    Article  CAS  Google Scholar 

  125. Hutchison, J. E. The road to sustainable nanotechnology: Challenges, progress and opportunities. ACS Sustain. Chem. Eng. 4, 5907–5914 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the support received from the US National Science Foundation (NSF) through the Nanosystems Engineering Research Center for Nanotechnology Enabled Water Treatment (Grant EEC-1449500).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Menachem Elimelech.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mauter, M.S., Zucker, I., Perreault, F. et al. The role of nanotechnology in tackling global water challenges. Nat Sustain 1, 166–175 (2018). https://doi.org/10.1038/s41893-018-0046-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41893-018-0046-8

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene