Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Increased vegetation growth and carbon stock in China karst via ecological engineering

Abstract

Afforestation and reforestation projects in the karst regions of southwest China aim to combat desertification and improve the ecological environment. However, it remains unclear at what scale conservation efforts have impacted on carbon stocks and if vegetation regrowth occurs at a large spatial scale as intended. Here we use satellite time series data and show a widespread increase in leaf area index (a proxy for green vegetation cover), and aboveground biomass carbon, which contrasted negative trends found in the absence of anthropogenic influence as simulated by an ecosystem model. In spite of drought conditions, aboveground biomass carbon increased by 9% (+0.05 Pg C y−1), mainly in areas of high conservation effort. We conclude that large scale conservation projects can contribute to a greening Earth with positive effects on carbon sequestration to mitigate climate change. At the regional scale, such ecological engineering projects may reduce risks of desertification by increasing the vegetation cover and reducing the ecosystem sensitivity to climate perturbations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Temporal profiles averaged over the three provinces.
Fig. 2: Trends, anomalies and carbon stocks.
Fig. 3: The study area includes the provinces Guangxi, Guizhou and Yunnan in southwest China.
Fig. 4: Grouped changes in vegetation trends.

Similar content being viewed by others

References

  1. Martinez-Ramos, M. et al. Anthropogenic disturbances jeopardize biodiversity conservation within tropical rainforest reserves. Proc. Natl Acad. Sci. USA 113, 5323–5328 (2016).

    Article  CAS  Google Scholar 

  2. Fang, J. et al. Forest biomass carbon sinks in East Asia, with special reference to the relative contributions of forest expansion and forest growth. Glob. Change Biol. 20, 2019–2030 (2014).

    Article  Google Scholar 

  3. Zhou, L. et al. Widespread decline of Congo rainforest greenness in the past decade. Nature 509, 86–90 (2014).

    Article  CAS  Google Scholar 

  4. Piao, S. et al. Detection and attribution of vegetation greening trend in China over the last 30 years. Glob. Change Biol. 21, 1601–1609 (2015).

    Article  Google Scholar 

  5. Schwalm, C. R. et al. Global patterns of drought recovery. Nature 548, 202–205 (2017).

    Article  CAS  Google Scholar 

  6. Doughty, C. E. et al. Drought impact on forest carbon dynamics and fluxes in Amazonia. Nature 519, 78–82 (2015).

    Article  CAS  Google Scholar 

  7. Kharin, V. V., Zwiers, F. W., Zhang, X. & Hegerl, G. C. Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations. J. Clim. 20, 1419–1444 (2007).

    Article  Google Scholar 

  8. Seddon, A. W. R., Macias-Fauria, M., Long, P. R., Benz, D. & Willis, K. J. Sensitivity of global terrestrial ecosystems to climate variability. Nature 531, 229–232 (2016).

    Article  CAS  Google Scholar 

  9. Lloret, F., Escudero, A., Iriondo, J. M., Martínez-Vilalta, J. & Valladares, F. Extreme climatic events and vegetation: the role of stabilizing processes. Glob. Change Biol. 18, 797–805 (2012).

    Article  Google Scholar 

  10. Zhu, Z. et al. Greening of the Earth and its drivers. Nat. Clim. Change 6, 791–795 (2016).

    Article  CAS  Google Scholar 

  11. Liu, Y. Y. et al. Recent reversal in loss of global terrestrial biomass. Nat. Clim. Change 5, 470–474 (2015).

    Article  Google Scholar 

  12. Fensholt, R. et al. Greenness in semi-arid areas across the globe 1981–2007 — an Earth Observing Satellite based analysis of trends and drivers. Remote Sens. Environ. 121, 144–158 (2012).

    Article  Google Scholar 

  13. Brandt, M. et al. Human population growth offsets climate-driven increase in woody vegetation in sub-Saharan Africa. Nat. Ecol. Evol. 1, 0081 (2017).

    Article  Google Scholar 

  14. Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).

    Article  CAS  Google Scholar 

  15. Tong, X. et al. Quantifying the effectiveness of ecological restoration projects on long-term vegetation dynamics in the karst regions of southwest China. Int. J. Appl. Earth Obs. Geoinf. 54, 105–113 (2017).

    Article  Google Scholar 

  16. Ouyang, Z. Y. et al. Improvements in ecosystem services from investments in natural capital. Science 352, 1455–1459 (2016).

    Article  CAS  Google Scholar 

  17. Hua, F. et al. Opportunities for biodiversity gains under the world’s largest reforestation programme. Nat. Commun. 7, 12717 (2016).

    Article  CAS  Google Scholar 

  18. Moore, J. C. et al. Will China be the first to initiate climate engineering? Earth’s Future 4, 588–595 (2016).

    Article  Google Scholar 

  19. Xu, W. et al. Strengthening protected areas for biodiversity and ecosystem services in China. Proc. Natl Acad. Sci. USA 114, 1601–1606 (2017).

    Article  CAS  Google Scholar 

  20. Jiang, Z. C., Lian, Y. Q. & Qin, X. Q. Rocky desertification in Southwest China: Impacts, causes, and restoration. Earth Sci. Rev. 321, 1–12 (2014).

    Article  Google Scholar 

  21. Sweeting M. M. Karst in China: Its Geomorphology and Environment (Springer, Berlin, New York, 2012).

  22. Miao, Z. L. Xu Xiake’s contributions to karst study in Southwestern China. Geogr. Res. 5, 18–24 (1986).

    Google Scholar 

  23. Zhang, C., Qi, X., Wang, K., Zhang, M. & Yue, Y. The application of geospatial techniques in monitoring karst vegetation recovery in southwest China: a review. Progr. Phys. Geogr. 41, 450–477 (2017).

    Article  Google Scholar 

  24. Delang, C. O. & Yuan, Z. China’s Grain for Green Program (Springer, Heidelberg, 2015).

  25. Yan, K. et al. Evaluation of MODIS LAI/FPAR Product Collection 6. Part 1: consistency and improvements. Remote Sens. 8, 359–16 (2016).

    Article  CAS  Google Scholar 

  26. Smith, B. et al. Implications of incorporating N cycling and N limitations on primary production in an individual-based dynamic vegetation model. Biogeosciences 11, 2027–2054 (2014).

    Article  Google Scholar 

  27. de Jong, R., Verbesselt, J., Zeileis, A. & Schaepman, M. E. Shifts in global vegetation activity trends. Remote Sens. 5, 1117–1133 (2013).

    Article  Google Scholar 

  28. Beguería, S., Vicente-Serrano, S. M., Reig, F. & Latorre, B. Standardized precipitation evapotranspiration index (SPEI) revisited: parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. Int. J. Climatol. 34, 3001–3023 (2014).

    Article  Google Scholar 

  29. Grogan, K., Pflugmacher, D., Hostert, P., Kennedy, R. & Fensholt, R. Cross-border forest disturbance and the role of natural rubber in mainland Southeast Asia using annual Landsat time series. Remote Sens. Environ. 169, 438–453 (2015).

    Article  Google Scholar 

  30. Peng, S. et al. Recent change of vegetation growth trend in China. Environ. Res. Lett. 6, 044027 (2011).

    Article  Google Scholar 

  31. Zhang, Y. et al. Multiple afforestation programs accelerate the greenness in the ‘Three North’ region of China from 1982 to 2013. Ecol. Indic. 61, 404–412 (2016).

    Article  Google Scholar 

  32. Xiao, J. Satellite evidence for significant biophysical consequences of the ‘Grain for Green’ Program on the Loess Plateau in China. J. Geophys. Res. Biogeosci. 119, 2014JG002820 (2014).

    Article  Google Scholar 

  33. Li, S. et al. Vegetation changes in recent large-scale ecological restoration projects and subsequent impact on water resources in China’s Loess Plateau. Sci. Total Environ. 569–570, 1032–1039 (2016).

    Article  Google Scholar 

  34. Cai, H., Yang, X., Wang, K. & Xiao, L. Is forest restoration in the Southwest China Karst promoted mainly by climate change or human-induced factors? Remote Sens. 6, 9895–9910 (2014).

    Article  Google Scholar 

  35. Meyfroidt, P. & Lambin, E. F. Forest transition in Vietnam and its environmental impacts. Glob. Change Biol. 14, 1319–1336 (2008).

    Article  Google Scholar 

  36. Bulletin of China’s Rocky Desertification (State Forestry Administration of China, 2012); http://www.forestry.gov.cn/portal/zsxh/s/3445/content-548741.html.

  37. Houghton, R. A. & Nassikas, A. A. Global and regional fluxes of carbon from land use and land cover change 1850–2015. Glob. Biogeochem. Cycles 31, 2016GB005546 (2017).

    Article  Google Scholar 

  38. Yan, K. et al. Evaluation of MODIS LAI/FPAR Product Collection 6. Part 2: validation and intercomparison. Remote Sens. 8, 460–426 (2016).

    Article  Google Scholar 

  39. Myneni, R. B. et al. Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data. Remote Sens. Environ. 83, 214–231 (2002).

    Article  Google Scholar 

  40. Samanta, A. et al. Comment on ‘drought-induced reduction in global terrestrial net primary production from 2000 through 2009’. Science 333, 1093–1093 (2011).

    Article  CAS  Google Scholar 

  41. Zhu, Z. et al. Global data sets of vegetation leaf area index (LAI)3g and fraction of photosynthetically active radiation (FPAR)3g derived from global inventory modeling and mapping studies (GIMMS) normalized difference vegetation index (NDVI3g) for the period 1981 to 2011. Remote Sens. 5, 927–948 (2013).

    Article  Google Scholar 

  42. Tian, F., Brandt, M., Liu, Y. Y., Rasmussen, K. & Fensholt, R. Mapping gains and losses in woody vegetation across global tropical drylands. Glob. Change Biol. 4, 1748–1760 (2017).

    Article  Google Scholar 

  43. Baccini, A. et al. Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nat. Clim. Change 2, 182–185 (2012).

    Article  CAS  Google Scholar 

  44. Breiman, L. Arcing the Edge (Statistics Department, Univ. California, Berkeley, 1997).

    Google Scholar 

  45. Vicente-Serrano, S. M., Beguería, S., López-Moreno, J. I., Angulo, M. & El Kenawy, A. A New global 0.5° gridded dataset (1901–2006) of a multiscalar drought index: comparison with current drought index datasetsbased on the palmer drought severity index. J. Hydrometeor. 11, 1033–1043 (2010).

    Article  Google Scholar 

  46. Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations – the CRU TS3.10 dataset. Int. J. Climatol. 34, 623–642 (2014).

    Article  Google Scholar 

  47. Farquhar, G. D., Von Caemmerer, S. & Berry, J. A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149, 8–90 (1980).

    Article  CAS  Google Scholar 

  48. Haxeltine, A. & Prentice, I. C. A general model for the light-use efficiency of primary production. Func. Ecol. 10, 551–561 (1996).

    Article  Google Scholar 

  49. Lamarque, J.-F. et al. Multi-model mean nitrogen and sulfur deposition from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): evaluation of historical and projected future changes. Atmos. Chem. Phys. 13, 7997–8018 (2013).

    Article  Google Scholar 

  50. Etheridge, D. M. et al. Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn. J. Geophys. Res. Atmos. 101, 4115–4128 (1996).

    Article  CAS  Google Scholar 

  51. Keeling, C. D., Whorf, T. P., Wahlen, M. & van der Plichtt, J. Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980. Nature 375, 666–670 (1995).

    Article  CAS  Google Scholar 

  52. Keenan, T. F. et al. Recent pause in the growth rate of atmospheric CO2 due to enhanced terrestrial carbon uptake. Nat. Commun. 7, 13428 (2016).

    Article  CAS  Google Scholar 

  53. Liu, J., Li, S., Ouyang, Z., Tam, C. & Chen, X. Ecological and socioeconomic effects of China’s policies for ecosystem services. Proc. Natl Acad. Sci. USA 105, 9477–9482 (2008).

    Article  CAS  Google Scholar 

  54. Xu, Z., Bennett, M. T., Tao, R. & Xu, J. China’s sloping land conversion program four years on: current situation and pending issues. Int. Forest. Rev. 6, 317–326 (2004).

    Article  Google Scholar 

  55. Trac, C. J., Harrell, S., Hinckley, T. M. & Henck, A. C. Reforestation programs in southwest China: reported success, observed failure, and the reasons why. J. Mt. Sci. 4, 275–292 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

The study was funded by the National Key Research and Development Program of China (no. 2016YFC0502400) and National Natural Science Foundation of China (no. 41471445, 41371418) and Science and Technology Service Network Initiative of Chinese Academy of Sciences (no. KFJ-STS-ZDTP-036). M.B. received funding from the European Union’s Horizon 2020Research and Innovation programme under Marie Sklodowska-Curie grant agreement no. 656564. R.F. acknowledges funding from the Danish Council for Independent Research (DFF) grant iD: DFF–6111-00258.

Author information

Authors and Affiliations

Authors

Contributions

X.T., M.B., R.F., S.H., Y.Y., W.K. and K.W. designed the study. X.T., S.H. (BFAST), W.K. and G.S. (LPJ) conducted the analyses with support from F.T., Y.Y., M.B. and R.F. MODIS and LAI data were prepared by R.M. and C.C.; M.B. and X.T. drafted the manuscript, which was edited by R.F., S.H., W.K., Y.Y., G.S., F.T., Z.S., X.X., C.C., H.C. and Y.L.

Corresponding authors

Correspondence to Yuemin Yue or Kelin Wang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–6 and Tables 1,2

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tong, X., Brandt, M., Yue, Y. et al. Increased vegetation growth and carbon stock in China karst via ecological engineering. Nat Sustain 1, 44–50 (2018). https://doi.org/10.1038/s41893-017-0004-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41893-017-0004-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing