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Through technological innovations, patient cohorts can be examined from multiple views with high-
dimensional, multiscale biomedical data to classify clinical phenotypes and predict outcomes. Here,
we aim to present our approach for analyzing multimodal data using unsupervised and supervised
sparse linear methods in a COVID-19 patient cohort. This prospective cohort study of 149 adult
patients was conducted in a tertiary care academic center. First, we used sparse canonical correlation
analysis (CCA) to identify and quantify relationships across different data modalities, including viral
genome sequencing, imaging, clinical data, and laboratory results. Then, we used cooperative
learning to predict the clinical outcome of COVID-19 patients: Intensive care unit admission.We show
that serum biomarkers representing severe disease and acute phase response correlate with original
and wavelet radiomics features in the LLL frequency channel (cor(Xu1, Zv1) = 0.596, p value < 0.001).
Among radiomics features, histogram-based first-order features reporting the skewness, kurtosis,
and uniformity have the lowest negative, whereas entropy-related features have the highest positive
coefficients.Moreover, unsupervised analysis of clinical data and laboratory results gives insights into
distinct clinical phenotypes. Leveraging the availability of global viral genome databases, we
demonstrate that the Word2Vec natural language processing model can be used for viral genome
encoding. It not only separates major SARS-CoV-2 variants but also allows the preservation of
phylogenetic relationships among them. Our quadruple model using Word2Vec encoding achieves
better prediction results in the supervised task. The model yields area under the curve (AUC) and
accuracy values of 0.87 and 0.77, respectively. Our study illustrates that sparse CCA analysis and
cooperative learning are powerful techniques for handling high-dimensional, multimodal data to
investigate multivariate associations in unsupervised and supervised tasks.

Coronavirus Disease 2019 (COVID-19), caused by severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2), was declared a pandemic by the
World Health Organization (WHO) on March 11, 2020, and has since
affected millions of lives worldwide1. The pandemic has made it clear that
even in high-income countries, healthcare services have the potential to be
under immense pressure due to overcrowded hospitals and scarce

resources2. This has been even more pronounced in areas vital to effective
patient management, such as patient prognostication and decisions in
emergency triage3.

As it is known, factors like male sex, age, and comorbidities have been
tied to disease severity in COVID-194,5. Anomalies in laboratory results,
radiological abnormalities, and the presence of specific viral mutations can
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also influence the clinical course6–13. As a result, since the clinical trajectory
of COVID-19 patients varies significantly, addressing this variation
becomes crucial in patientmanagement, requiringnovel approaches to infer
underlying hidden patterns, identify disease phenotypes, and develop
models for outcome predictions in real-life settings.

In recent years, the power of multi-modal data fusion in biomedical
research has become increasingly evident. Technological innovations allow
us to study a patient or a cohort from multiple perspectives using high-
dimensional, multiscale biomedical data. Examples of biomedical data
include clinical (electronic health records, clinical notes, laboratory results),
pathological (histopathology examinations, immunofluorescence staining),
molecular (DNA and RNA sequences, transcriptomics, epigenetics), and
imaging (X-ray, computed tomography (CT), magnetic resonance imaging
(MRI)) data. Machine learning methodologies have been pivotal in com-
bining and analyzing these data modalities, unveiling a myriad of bio-
markers that can be harnessed for personalized medicine applications14–18.
Pioneer studies in multi-modal data fusion have mainly been developed in
oncology: advances in next-generation sequencing, transitioning from
conventional histopathology to whole slide imaging, the comprehensive
usage of radiological images, and establishing standardized, publicly avail-
able large datasets, such as The Cancer Genome Atlas (TCGA), has been a
significant catalyst for these studies15,19.

Since a plethora of clinical, laboratory, imaging, and viral genome
sequencing data is available for research, COVID-19 offers a promising
avenue for applying multi-modal data fusion. However, despite the
potential, its application presents unique challenges. Notably, while data-
bases for viral genome sequencing, such as The Global Initiative on Sharing
All Influenza Data (GISAID) and The National Center for Biotechnology
Information (NCBI), are available, a consolidated approach to link diverse
datasets, including imaging, molecular, and clinical information, remains
challenging20–22. In addition, implementing data fusion strategies using the
data from a real-life patient cohort, without any clinical intervention and
standardization, is also compelling.

This paper presents our approach for analyzing multi-modal data in a
COVID-19 patient cohort using unsupervised and supervised sparse linear
methods. Specifically, we use canonical correlation analysis (CCA) and
cooperative learning to understand the relationships between relevant data
modalities andpredict intensive careunit (ICU) admission, respectively23–25.

Results
Descriptive analysis
In total, 149 patients were enrolled in the study, and 63 patients (42.3%)
were admitted to the ICU(Table 1). Themeanagewas 57.6 ± 16.2 years, and
61 patients (40.9%) were female. Hypertension (48.3%), diabetes mellitus
(29.5%), and coronary artery disease (22.1%) were the most common
comorbidities. Themean age was higher in the ICU group compared to the
non-ICUgroup (63.9 ± 15.0 vs. 53.1 ± 15.6,p < 0.001). ThemedianCCIwas
4 (3–6) in patients hospitalized in ICU compared to 2 (1–4) in those not
hospitalized in ICU (p < 0.001). Age, sex, comorbidities, and CCI were used
as clinical variables in downstream tasks.

The number of patients who underwent chest CT at least oncewas 127
(Supplementary Fig. 1). In 105 isolated viral genome samples, the number of
uniquenucleotidemutationswas 710, and thenumber of unique aminoacid
mutations was 439. Themedian of nucleotidemutations per strain was 29.0
(21.0–33.0), and the median of amino acid mutations was 22.5 (12.0–27.8)
(Supplementary Fig. 2). Fifty-two strains (49.5%) were assigned to Variant
20I (Alpha, V1) according to the Nextclade clades (Fig. 1).

Visualization of the global SARS-CoV-2 strains using Word2Vec
embedding
We visualized 300 randomly selected viral strains from each Nextclade
clade in the corpus, generated with global viral genome sequences on the
GISAID database. This shows that major variants, such as Variants 20I
(Alpha, V1), 20H (Beta, V2), 21I, and 21J (Delta’s), and Omicron clades,
were successfully separated (Fig. 2). Not only separation but also some of

the characteristic features seen in phylogenetic relationships were
observed in the embedding space. While more ancestral clades, for
instance, Variants 19A, 19B, and 20A, representing the early days of the
pandemic, had a wider distribution, clades dating to later periods tend to
be observed within clusters. Furthermore, clades that have closer evolu-
tionary relationships, for example, Variants 20H (Beta, V2), 21I (Delta),
and 21H (Mu) were located closer in the embedding space26. On the other
hand, Omicron variants were separated from these groups, as highlighted
in the literature27. It was also seen that some recombinant strains were
located close to the Omicron variants, while others tended to spread
toward other variants.

Unsupervised pairwise data fusion using sparse CCA
Next, we performed sparse CCA analysis to examine the pairwise associa-
tions between all data modalities (Table 2). Relevant sparsity parameters
corresponding to the highest Z-stat score were determinedwith the number
of non-zero weights of X and Z. We first report the results for combining
laboratory results and radiomics features for 127 patients (cor(Xu1,
Zv1) = 0.596,. In the laboratory results group, lactate dehydrogenase (LDH),
which relates to disease progression and worse outcome, had the highest
coefficient value (0.47), followed by erythrocyte sedimentation rate, D-
dimer, polymorphonuclear leukocytes, white blood cell count, and acute
phase reactants such as C-reactive protein (CRP) and fibrinogen28. At the
same time, albumin had the lowest coefficient value (−0.46) as a negative
acute phase reactant, along with hemoglobin, lymphocyte, and sodium
levels. In the radiomics features group, original and wavelet features in the
LLL frequency channel had the highest absolute values of coefficients.
Among them, histogram-based first-order features reporting the skewness,
kurtosis, and uniformity had the lowest negative coefficients, whereas
entropy-related features had the highest positive coefficients. The negative

Table 1 | Clinical characteristics of the patients

Variable ICU (+) (n: 63) ICU (−)
(n: 86)

p value

Age, years, mean (SD) 63.9 (15.0) 53.1 (15.6) <0.001

Female sex, n (%) 26 (41.3) 35 (40.7) 1

Comorbidities, n (%)

Hypertension 38 (60.3) 34 (39.6) 0.02

Diabetes mellitus 22 (34.9) 22 (25.6) 0.29

Coronary artery disease 22 (34.9) 11 (12.8) 0.003

Solid organ malignancy 13 (20.6) 19 (22.1) 0.99

Kidney disease 13 (20.6) 10 (11.6) 0.20

Cardiac failure 14 (22.2) 6 (7.0) 0.01

Chronic lung disease 12 (19.0) 7 (8.1) 0.08

Hematologic malignancy 4 (6.3) 7 (8.1) 0.76

Rheumatologic disease 4 (6.3) 3 (3.5) 0.46

Cerebrovascular disease 2 (3.2) 3 (3.5) 1

Peripheric arterial disease 1 (1.6) 1 (1.2) 1

Dementia 2 (3.2) 0 (0.0) 0.18

Liver disease 0 (0.0) 2 (2.3) 0.50

Immunocompromised, n (%) 12 (19.0) 16 (18.6) 1

COVID-19 vaccination history, n (%) 14 (22.2) 8 (9.3) 0.05

Age-adjusted Charlson comorbidity
index, median (IQR)

4 (3–6) 2 (1–4) <0.001

Steroid treatment (Minimum 6mg/day
dexamethasone), n(%)

51 (81.0) 23 (26.7) <0.001

Hospital LOS, days, median (IQR) 15 (10.5–31.5) 10 (6–14.75) <0.001

In-hospital mortality, n (%) 19 (30.2) 1 (1.2) <0.001

ICU intensive care unit, LOS length of stay, IQR interquartile range.
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coefficients of skewness and kurtosis features indicated that, as laboratory
results worsened, since image density is measured approximately as−1000
Hounsfield units (HU) for air, and0 to+70HUfor various tissue types such
as blood, pleural effusion, abscess, andmucus, depending on the extent and
content of the lung abnormalities, the image intensity histogram became
flatter and more right-skewed29,30. This led to a loss of homogeneity and
increased entropy in the radiomics features (Fig. 3).

Sparse CCA analysis of laboratory results and clinical data revealed
different clinical phenotypes. (cor(Xu1, Zv1) = 0.63, best L1 bound forX and
Z: 0.7, p = 0.04) (Fig. 4).While laboratory results’ first canonical coefficients
revealed a phenotype related to high creatinine levels with low albumin
levels and anemia, on the clinical side, the patient appeared to be elderly and
multi-morbid with moderate to severe renal disease. The second canonical
variables represented a different patient phenotype who was young and
immunocompromised with high ferritin levels. The third canonical vari-
ables also characterized a phenotype that likely presents a patient with a
history of liver disease with elevated INR, total bilirubin levels, and
hypoalbuminemia.

Next, we focused on the sparse CCA analysis of imaging and clinical
data (Supplementary Fig. 3). In this experiment, the permutation-based
approach for choosingparameters provideda sparser solution thanprevious
ones; the correlation coefficient was 0.65 (p < 0.01). The first and third
canonical vectors were found to be associated with sex, and the second and
fourth ones were with lymphoma and CCI, respectively. Mainly, the first
sex-related canonical vector coefficients belonged to the left, and the second
sex-related canonical vector coefficients belonged to the right lung and
consisted of first-order and shape radiomics classes. In combinations of
pairwise sparse CCA analysis of viral genome sequencing data with other
data modalities, different encoding techniques for the viral genome altered
the correlation plots, with better separation obtained with Viral-Word2Vec
encoding (Supplementary Fig. 4).

Finally, we performed sparse multi-CCA on patients with all data
modalities (n = 89). When Viral-Binary encoding was used for viral
encoding, the highest Z-score was 2.15 (penalties = 12.22, 6.64, 1.56, 1.7,
p < 0.01). The highest Z-score was 3.14 (penalties = 17.923, 8.468, 2.293,
2.493, p < 0.01) when Viral-Word2Vec was used for viral encoding. We

Fig. 1 | Phylogenetic tree, nucleotide substitution matrix, and Word2Vec
encoding plot of isolated SARS-CoV-2 strains. a The phylogenetic tree of isolated
SARS-CoV-2 strains and nucleotide substitutions in matrix form, in which the

presence of substitutions is shown in dark red. bTheWord2Vec encoding plot of the
same strains. The nucleotide substitution matrix and Word2Vec encoding plot
represent that Alpha strains appear more similar compared to non-Alpha strains.

Fig. 2 | Phylogenetic tree and 2DWord2Vec encoding plot of global SARS-CoV-2
strains. aThe phylogenetic relationships of the global SARS-CoV-2 clades as defined
by Nextstrain. The screenshot was taken from CoVariants.org26. b the Word2Vec

encoding plot of 300 randomly selected viral strains from each Nextclade clade.
Major variants, such as Variants 20I (Alpha, V1), 20H (Beta, V2), 21I, and 21J
(Delta’s), and Omicron clades, are successfully separated.
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showed that with the Viral-Word2Vec embedding, the viral genome pro-
jection of the patients was more homogeneously distributed, and pairwise
correlation values of viral features and other data modalities were reduced
(Fig. 5). While the dominance of histogram-based first-order radiomics
features and the importance of albumin and LDH among the laboratory
results persisted in the analysis of these 89 patients, clinical data’s first
canonical vectors slightly revealed a different clinical phenotype which was
an elderly multimorbid patient with dementia (Supplementary Fig. 5).

Supervised multiview analysis using cooperative learning
We performed cooperative learning to build prediction models for ICU
admission. First, we used all five data modalities to train unimodal pre-
dictionmodels in all patients.Thehighest scorewas achievedwith themodel
using radiomics features (AUC = 0.83 ± 0.01), followedby laboratory results
and clinical data (AUC = 0.77 ± 0.02 vs. 0.67 ± 0.02), respectively (Supple-
mentary Table 1 and Supplementary Fig. 6).

Then, the models were trained with all available singular, dual, and
quad data combinations and evaluated for the same task in 89 patients. The
best accuracy and AUC values were achieved with the quadruple model,
which combines clinical, laboratory, radiomics, and viral genome sequen-
cing data using Viral-Word2Vec encoding (CLRW) (Supplementary Table
2 and Fig. 6). While unimodal prediction models of radiomics features and
laboratory results had a mean AUC score of 0.83, the quadruple prediction
model usingViral-Word2Vec encoding achieved ameanAUCscoreof 0.87.
ThemeanAUC score for the quadruplemodel usingViral-Binary encoding
was 0.83 ± 0.2. There was a statistical difference between these two quad-
ruple models (p < 0.001). The model that combines radiomics and Viral-
Word2Vec encoding also outperformed themodel that combines radiomics
andViral-Binary encoding in terms of AUC scores (0.86 vs. 0.83, p < 0.001).
There was no statistical difference when we used different viral embedding
techniques in other models with dual data combinations.

To understand which features were the most important for the per-
formance of the CLRWmodel, we used all the available data as the training
set. We performed a 5-fold CV to get the optimal hyperparameters and
found Alpha and rho as 0.2 and 0.1, respectively. Model standardized
coefficients were extracted at λ = 0.1 (Supplementary Fig. 7). Again, like the
results of the unsupervised sparse CCC analysis of radiomics and laboratory
results, the original and wavelet features in the LLL frequency channel had
the highest absolute values for the standardized coefficients. LDH, ESR,
CRP, albumin, and total bilirubin were the selected serum biomarkers, and
age, chronicdisease, andCCIwere the clinical variablesof theCLRWmodel.
Word2Vec encoding also contributed to the supervised taskwith its 4 out of
300 dimensions.

Discussion
The complexities of modern biomedical challenges demand more holistic
approaches to data analysis. This study spotlights the potential of multi-

modal data fusion, harnessing diverse data modalities to derive deeper
insights into health phenomena. By integrating disparate data types, we can
uncover nuanced patterns and relationships that single-modal analyses
might miss. In particular, the potential of integrating viral genome
sequencing, imaging, clinical data, and laboratory results is immense. Sparse
CCA analysis and cooperative learning, as highlighted in our study, are
instrumental in combining these data strands, offering a multi-faceted view
of a complex disease such as COVID-19. Our exploration into using the
Word2VecNLPmodel for viral embedding further underscores the value of
innovative techniques in transforming raw data into meaningful repre-
sentations, especially in the context of viral genomic sequencing data.

Our approach has precedence. Using NLP techniques, particularly the
Word2Vec model for viral embedding, has been recognized in prior
research. Butwhile earlier studieswere often unimodal and focused on tasks
like viral classification or evolution tracking, our method differs by inte-
grating this with other data modalities, offering a more comprehensive
view31–34. Themerit of this method is evident in its ability to encapsulate the
cumulative effects of multiple viral mutations and their relationships, a task
that single-modal approaches might find challenging. For example, we
illustrated thatWord2Vec encoding not only separates major SARS-CoV-2
variants but also allows the preservation of phylogenetic relationships
among them. We also found that Word2Vec encoding is beneficial in
showing which groups recombinant strains are close to, which might be
challenging to represent in a phylogenetic tree.

Next, imaging data, particularly CT scans, holds potentially more
information than can be observed by radiologists. Radiomics offers a
quantitative approach to interpreting this data, allowing correlations with
clinical features and laboratory results. Previous literature has highlighted
the correlation between radiologicalfindings and other biomarkers35–37. Our
analysis shows that serum biomarkers that represent positive and negative
acute phase responses are mainly found to be correlated with radiomics
features related to the distribution of voxel intensities. As known, in lung
nodule and cancer studies, mainly shape-related features are robust and
provide information about disease phenotypes and prognosis; however, our
results emphasize the importance of histogram- and entropy-related fea-
tures because a higher proportion of involved lung parenchyma, i.e., diffuse
pulmonary infiltrates, is associatedwith severe disease38–40. Furthermore, we
reveal that biomarkers not playing a role in acute phase response, such as
ALT, potassium, and creatinine, are not correlated with radiomics features.

Sparse CCA has been championed in various biomedical domains,
from understanding eating disorders via imaging data to categorizing
clinical subtypes in dementia41,42. Our application to COVID-19 aligns with
this trajectory, delineating clinical phenotypes like kidney disease, liver
dysfunction, and age-related vulnerabilities, supported by existing literature
and our clinical observations43–46. However, challenges persist. Multi-modal
data fusiondemands rigorous computational techniques, nuancedstrategies
for feature extraction, and the transformation of raw data into a structured

Table 2 | Sparse CCA analysis for examining pairwise associations between all data modalities

Data modalities n Best L1 bound for X and Z Z-stat p value Number of non-zero
weights

Correlation

Radiomics Lab Results 127 0.70/0.70 2.882 <0.01 1199 17 0.596

Radiomics Clinical Data 127 0.10/0.10 3.423 <0.01 26 1 0.646

Radiomics Viral-Binary E. 89 0.50/0.50 0.558 0.16 462 235 0.761

Radiomics Viral-Word2Vec E. 89 0.70/0.70 0.584 0.20 775 241 0.524

Lab Results Clinical Data 127 0.70/0.70 1.392 0.04 16 21 0.628

Lab Results Viral-Binary E. 89 0.23/0.23 1.012 0.24 2 201 0.915

Lab Results Viral-Word2Vec E. 89 0.10/0.10 0.489 0.20 1 6 0.576

Clinical Data Viral-Binary E. 105 0.3/0.3 3.281 <0.01 17 328 0.982

Clinical Data Viral-Word2Vec E. 105 0.7/0.7 0.214 0.36 20 206 0.487

Sparsity parameters and correlations were calculated with the CCA.permute function. We chose the L1 bound for X and Z at the highest value of the Z-stat for each pairwise data modality.
n number, E encoding.
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format.Our experiments show thatwhenthese elements align—as seenwith
the optimal results using Word2Vec encoding—the outcomes are pro-
mising. This performance edge over Viral-Binary encoding likely arises
becauseWord2Vec benefits from an expansive external database, capturing
nuances not specific to our dataset.

There are various studies focusing on predicting a supervised task by
combining imaging and clinical data in COVID-19 patients36,47–51. It is
foreseeable that viral genome sequencing will be directly integrated into

clinical patient management in the coming years52. Yet, decisions sur-
rounding data fusion techniques and staging remain paramount. We
employed cooperative learning, enhancing alignment across modalities, to
determine optimal fusion, guided by the agreement penalty tuning to dis-
tinguish which patients should be admitted to the medical ward or ICU
when the relevant patient data was collected. At the end of the analysis, a
review of the features selected in both our unsupervised and supervised
models revealed a consistency, highlighting a harmony between an

Fig. 3 | Sparse CCA analysis of radiomics features and laboratory results.
a Correlated radiomics features. Original and wavelet features in the LLL frequency
channel have the highest absolute values of coefficients. bCoefficients of the original
radiomics features. cCorrelated laboratory results. Coefficients of laboratory results
align with serum biomarkers related to severe disease and acute phase response.
d The correlation between the first set of canonical variables shows that the first pair
can capture the ICU outcome. We select two patients (Patient A and Patient B) with
the lowest and two patients (Patient C and Patient D) with the highest canonical
variables for radiomics features. e Patient A and Patient B’s CT images in axial and

coronal planes have no pulmonary infiltration, whereas there are apparent findings
on Patient C and Patient D’s CT images for COVID-19 pneumonia. fWe select and
visualize 30 variables with the highest and 30 variables with the lowest coefficients
among the radiomics features. gThe image intensity histograms of the patients show
that Patient A and Patient B have left-skewed histograms peaking around−1000 to
−800 HU, consistent with air and lung parenchyma densities; however, histograms
of Patient C and Patient D are flatter and more right-skewed, consistent with
negative coefficients for skewness and kurtosis features and revealing a wider dis-
tribution of HU values.
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unsupervised use of sparse CCA analysis and supervised predictive coop-
erative learning.

A few caveats need to be noted. First, our relatively small sample size
might be suffering fromoverfittingof data.Toovercome this issue,weused a
stratified nested CV framework for estimating the generalization perfor-
mances of the trainedmodels. The sparsity penalty in both sparse CCA and
cooperative learning also helpedmitigate the risk of overfitting.Next, froma
clinical point of view, this study is dated in the early days of the pandemic,
and a small number of patients were vaccinated for COVID-19. Because it is
not possible to quantify the vaccination effect properly, we had to ignore this
effect.

To conclude, our findings reinforce the power and potential of multi-
modal data fusion in biomedical research. Sparse CCA analysis and coop-
erative learning are pivotal tools in managing and interpreting high-
dimensional data, as in the example of COVID-19. TheWord2Vec model,
as employed for viral genome encoding, is particularly promising, hinting at
future directions for research in multi-modal biomedical data fusion.

Methods
Study design and data collection
This prospective cohort study was conducted in a tertiary care academic
center in Ankara, Turkey, between December 22, 2020, and May 5, 2021.

Fig. 4 | Sparce CCA analysis of laboratory results and clinical data. The first four
canonical variables are provided. Different canonical variables provide different
clinical phenotypes: the first canonical variables represent a patient phenotype who
is elderly, multi-morbid, and has moderate to severe renal disease with high

creatinine and myoglobin levels, whereas the third canonical variables represent a
different patient phenotype with moderate to severe liver disease with high bilirubin
and INR levels.

Fig. 5 | Sparsemulti-CCA analysis of all datamodalities. aThe correlation pairs plot of the first canonical vectors of four datamodalities, including Viral-Binary encoding.
b Using Viral-Word2Vec encoding instead of Viral-Binary encoding provides a more homogenous distribution and better separation among canonical variables.
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The cohort consisted of two groups of patients: one group recruited as a part
of the project entitled “Viral Genome Analysis in COVID-19 Patients and
Genotyping of Genetic Variants Shown in the Literature Related to the
Severe Course of the Disease in Humans” and the other group recruited
within the scope of the Global Influenza Hospital Surveillance Network
Project (GIHSN)-2020-21 in Turkey53. Ethical approvals were obtained
from the Institutional Ethics Committee with the code numbers GO 2021/
02-22, GO 20-102, and GO 22-1211. Good clinical and laboratory practices
were followed throughout the study in accordance with the Declaration of
Helsinki.

Adult patients (≥18 years of age) hospitalized in the medical wards or
intensive care units (ICU) who were positive for SARS-CoV-2 polymerase
chain reaction (PCR) test within the last 120 h and gave written informed
consent were included in the study. COVID-19 patients with at least one of
the below criteria were admitted to the ICU:
• Dyspnea and respiratory distress,
• Respiratory rate >30/min,
• PaO2/FiO2 < 300mmHg,
• Increased oxygen demand during follow-up,
• SpO2 < 90% or PO2 < 70mmHg despite 5 l/min O2 support,
• Hypotension (Systolic blood pressure <90mmHg or more than

40mmHg drop from usual systolic blood pressure level or mean
arterial blood pressure <65mmHg),

• Development of acute organ dysfunction such as acute kidney injury,
acute elevation in liver function tests, confusion, acutebleedingdiathesis,

• Elevated serum troponin with arrhythmia,
• Lactate >2mmol/l.

Relevant clinical information was gathered through face-to-face
interviews with patients and attending physicians and by reviewing clin-
ical records. Age, sex, comorbidities such as diabetes, heart failure, coronary
artery disease, hypertension, malignancy, polymerase chain reaction (PCR)
test results, vaccination history, medications and therapies, outcomes,
laboratory results, GISAID EPI_SET identifiers, and imaging data were
recorded. Age-adjusted Charlson comorbidity index (CCI) was calculated
for each patient. Min-max normalization was performed for age and CCI.
Since laboratory results can changewithin days or even hours inCOVID-19
patients, only results at the time of imagingwere included. Among recorded
22 laboratory features out of 127 patients, erythrocyte sedimentation rate
(ESR) wasmissing in 5 (4%), and troponin-I andmyoglobin were absent in
11 (8.7%) patients. The mean substitution was performed to handle these
missing values.All the information related topatients has been anonymized.

Sampling and next-generation viral genome sequencing
protocol
Anasopharyngeal swabornasal specimencombinedwith anoropharyngeal
swab was obtained from conscious patients, and a tracheal aspirate from
intubated patients, in case they complywith inclusion criteria.MedicalWire
M40-ACompliant Sigma-Virocult™Viral Collection and Transport System
combining open-bud Sigma-Swab™ with Virocult™medium was used. EZ1

Fig. 6 | Unimodal andmultimodal predictionmodels for the supervised task.The best accuracy and AUC values are achieved with the quadruple model usingWord2Vec
Encoding (CLRW). C clinical data, L laboratory results, R radiomics, B viral-binary encoding, WViral-Word2Vec encoding, AUC area under the curve, ns non-significant.
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Virus mini kit V2.0 (Catalog number: 955134, Qiagen, Germany) was used
for total nucleic acid extraction. Samples were directly introduced to the
sequencing platform after nucleic acid extraction. Library preparation was
performed using Respiratory Virus Oligos Panel V2 (Illumina Inc.,
#20044311) and Illumina RNA Prep with Enrichment, (L) Tagmentation
(Illumina Inc., #20040537) kits according to official protocol. Before
sequencing, the libraries were quantified and checked on Qubit 4 Fluo-
rometer (ThermoFisher Inc.) and 2100 Bioanalyzer systems (Agilent Inc.).
The sequencing was performed on Illumina NextSeq 550 platforms with
1,000,000 reads (2 × 150 bp) per sample on average. Quality control of the
raw data was analyzed using the FASTQC tool. The quality passed samples
were uploaded to BaseSpace (Illumina Inc.) for bioinformatics analysis. The
datawere analyzedusing theDRAGENCOVIDLineage app (v.3.5.4) on the
BaseSpace platform. The low-quality and low-variant fraction variants were
filtered out (coverage >10). The filtered variants were submitted to the
GISAID database20.

Identifying viral mutations and construction of phylogenetic tree
Viral genome sequences were retrieved from the GISAID database (Sup-
plementary Note 1). Nextclade CLI (v.2.12.0) was used for sequence
alignment and identifying the nucleotide and amino acid mutations and
variant clades54. The reference genome was determined as SARS-CoV-2
isolate Wuhan-Hu-1, GenBank: MN908947.3. Isolated study strains’ phy-
logenetic tree construction was performed using an optimized substitution
model (GTR+ F+ I) according to the lowest Bayesian Information Cri-
terion (BIC) score obtained by the ModelFinder approach and followed by
ultrafast bootstrap analysis (175 iterations) on the IQ-TREE software
(v.1.6.12)55–57. Consensus tree annotation and visualization were then
completed using the ggtree (v.3.8.0) R package58.

Our approach contained the following steps (Fig. 7):
• Using binary encoding and leveraging theWord2vec natural language

processing model (NLP) for viral encoding59.
• Extraction of radiomics features from CT images.
• Performing canonical correlation analysis to understand relationships

between data modalities and identify clinical phenotypes23,24.
• Using cooperative learning to build prediction models for ICU

admission25.

Viral feature preprocessing
Before utilizing any machine learning model on a genome or amino acid
sequence, it is necessary to convert the sequence into a numerical format of
fixed length to construct an embedding space. For this purpose, various
techniques available in the literature are broadly classified as alignment-free
and alignment-based methods60. Alignment-free methods are mainly divi-
ded into word-based and information theory-based methods. While word-
based methods rely on discovering the frequency of words (k-mers) within
sequences and use similarity or dissimilarity measures derived from these
patterns, information theory-based methods capture the information
shared among sequences using entropy or complexity metrics61. On the
other hand, even though alignment-based methods have some dis-
advantages, such as becoming computationally expensive or assuming that

homologous sequences share conserved sequences, they still constitute a
well-established approach in phylogenetic studies. During the COVID-19
pandemic, Pango, Nextclade, and WHO classification systems have been
widely used, and all these systems essentially rely on this methodology62,63.
Also, they were used in machine-learning prediction studies for creating
viral feature embeddings64,65.

We tried and compared two different techniques for viral encoding:
• Viral-Binary encoding: as a typical example of alignment-based

methods, according to whether mutations were present or were not,
each mutation was encoded as “0” or “1”. In total, 439 unique amino
acid mutations were identified in 105 isolated study strains. This
created a binary column for each mutation and returned a sparse
matrix.

• Viral-Word2Vec encoding: since well-established viral genome
databases exist on a global scale, we aimed to combine alignment-
free and alignment-based models leveraging the Word2Vec NLP
model to reduce the size of the embedding space and extract the
semantic relationship between each of the mutations and the strains
themselves59,66. We treated amino acid mutations as words and strains
as sentences and used the Skip-Grammodel architecture that predicts
surrounding mutations in a context window given the current
mutation. To construct the corpus, viral strains whose outcomes were
known and collected between December 30, 2019, andMarch 2, 2023,
on the GISAID database were used. After collecting the data, we
defined the outlier strains as falling below Q1− 1.5 IQR or above
Q3+ 1.5 IQR in termsof the number ofmutations.As a result, 653,134
viral genomes were used for constructing the corpus. The maximum
number of mutations per strain was found to be 115, and accordingly,
this number was chosen as the context window to train theWord2Vec
model with vector dimension 300. The vocabulary size (the number of
unique amino acid mutations) was found to be 52,311. Strain
embeddings were calculated by getting the strains’ mean vector of
amino acid mutations. Multi-dimensional scaling (MDS) was used to
reduce dimensionality and visualize 2D plots67. Cosine similarities
between the strains were computed to construct a dissimilarity matrix,
and this matrix was used as the precomputed dissimilarity metric
in MDS.

Imaging data collection and analysis
For each patient with longitudinal CT images, the images were selected
based on the following criterion: Since the study outcome for the supervised
task is discharge from themedicalward (non-ICUgroup) or ICUadmission
(ICUgroup),we selected images closest to the outcome (Supplementary Fig.
8). Imagedatawereobtained fromSIEMENSscanners.CT section thickness
was as follows: less than 1mm (7 patients, 5.5%), greater than or equal to 1,
less than2mm(119patients, 93.7%), and greater thanor equal to2mm, less
than 3mm (1 patient, 0.01%). All images were visualized in 3D Slicer
(v.5.3.0), and the right and left lungs were segmentedwithU-net-based pre-
trained lungmask R23168,69. Eighteen first-order, 14 shape, 22Gray-level co-
occurrence matrix (GLCM), 16 Gray-level size zone matrix (GLSZM), and
14 Gray-level dependence matrix (GLDM) features were extracted from

Fig. 7 | Flowchart of themethods used in the study.Unsupervised sparse canonical correlation analysis and supervised cooperative learning are used for multi-modal data
fusion. Two different viral encoding techniques are performed and compared in these analyses.
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original and wavelet-filtered images from each lung using pyradiomics
(v.3.0.1)70. All imageswere normalizedwith a scale of 500. “sitkBSpline”was
used as the interpolator for resampling pixel space to (1.0,1.0,1.0) mm. A
fixed bin number of 64 was used for all analyses.

Data fusion methodologies
Assume we have two data matrices,X and Z, of dimensions n × p and n × q
on the same set of n observations are given as Eq. (1):

X ¼

x11 x12 � � � x1p
x21 x22 � � � x2p

..

. ..
. . .

. ..
.

xn1 xn2 � � � xnp

2
666664

3
777775
Z ¼

z11 z12 � � � z1q
z21 z22 � � � z2q

..

. ..
. . .

. ..
.

zn1 zn2 � � � znq

2
666664

3
777775

ð1Þ

Canonical correlation analysis (CCA) seeks linear combinations
(canonical variables) of the variables in X and Z that are maximally corre-
lated. That is, u1 = (u11, u21,…, up1)

T and v1 = (v11, v21,…, vq1)
T maximize

corr(Xu1, Zv1). Here, we refer to u1 and v1 as the canonical vectors and Xu1
andZv1 as the canonical variables.u and vhave the dimensions of p × K and
q ×K for K canonical vectors, which are not correlated with each other.

Sparse CCA aims to find sparse canonical vectors u and v such that
uTXTZv is optimized. The analysis was conducted using the PMA (v.1.2.1)
package24, where we used the CCA.permute function for selecting the
sparsityparameters.Multi-CCAwasusedas an extensionwherewe assessed
the relationship between more than two data modalities. The p values were
calculated through permutation with the MultiCCA.permute function.

Cooperative learningwas used for the supervised learning task to build
prediction models for ICU admission with multimodal data, which uses an
agreement penalty to encourage alignment between predictions from dif-
ferent data modalities. By varying the weight of the agreement penalty, it
provides a continuum of solutions that include the early and late fusion
approaches.Using cross-validation (CV), we chose the degree of agreement,
i.e., the optimal weight on the agreement penalty. Cooperative learning also
combines the lasso penalty with the agreement penalty, yielding feature
sparsity. Analyses were performed with the multiview (v.0.8) package25.

We used a repeated stratified nested CV framework for hyperpara-
meter tuning,model selection, and assessment (Supplementary Fig. 9). Ten-
fold CV was performed, with the loss function as “deviance” for tuning the
elastic-netmixing parameter and theweight of the agreement penalty in the
inner loop.Theouter loopassessed theperformanceofmodels trained in the
inner loop. The final performance scores were averaged after a 5-fold CV.
We conducted each experiment 30 times.

Statistical analysis
Descriptive statistics were used to calculate frequency and percent dis-
tributions. After testing assumptions of normality, the mean and standard
deviation were used for continuous variables with normal distribution and
themedian and interquartile range for continuous variableswithout normal
distribution. The statistical significance of the differences between groups
was tested using Chi-square and Fischer’s exact Chi-square tests for cate-
gorical variables, an independent two-sided t-test for continuous variables
with normal distribution, and a Mann–Whitney U test for continuous
variables without normal distribution. The equality of variances of the
results of cooperative learning was assessed with Bartlett’s test. If the
hypothesis of equal variances was rejected, Welch’s ANOVA was used to
test the significance between three ormore groups. TheGames-Howell post
hoc test was used as the nonparametric approach to compare pairwise
results of cooperative learning. Type I error was set at 0.05 for all analyses.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
The data supporting this study’s findings are available on request from the
corresponding authors. The data are not publicly available due to privacy or
ethical restrictions. All genome sequences used for training the Word2Vec
NLP model and associated metadata in this dataset are published in
GISAID’s EpiCoV database. To view the contributors of each individual
sequencewith details such as accession number, virus name, collection date,
originating lab and submitting lab, and the list of authors, visit https://doi.
org/10.55876/gis8.231104eq.

Code availability
The code used for the analysis is available on a GitHub repository at https://
github.com/ahmetgorkemer/multimodal_covid19_study.

Received: 6 November 2023; Accepted: 25 April 2024;

References
1. World Health Organization. Coronavirus Disease 2019 (COVID-19):

Situation Report, 51 (World Health Organization, 2020).
2. El Bcheraoui, C., Weishaar, H., Pozo-Martin, F. & Hanefeld, J.

Assessing COVID-19 through the lens of health systems’
preparedness: time for a change. Glob. Health 16, 112 (2020).

3. Wu, L. & Kong, X. COVID-19 pandemic: ethical issues and
recommendations for emergency triage. Front. Public Health 11,
1160769 (2023).

4. Williamson, E. J. et al. Factors associated with COVID-19-related
death using OpenSAFELY. Nature 584, 430–436 (2020).

5. Petrilli, C. M. et al. Factors associated with hospital admission and
critical illness among 5279 people with coronavirus disease 2019 in
New York City: prospective cohort study. BMJ 369, m1966 (2020).

6. Wu, C. et al. Risk factors associated with acute respiratory distress
syndrome and death in patients with coronavirus disease 2019
pneumonia inWuhan,China. JAMA Intern.Med. 180, 934–943 (2020).

7. Kwee, T. C. &Kwee, R.M.Chest CT inCOVID-19:what the radiologist
needs to know. RadioGraphics 40, 1848–1865 (2020).

8. Liao, D. et al. Haematological characteristics and risk factors in the
classification and prognosis evaluation of COVID-19: a retrospective
cohort study. Lancet Haematol. 7, e671–e678 (2020).

9. Bao, C., Liu, X., Zhang, H., Li, Y. & Liu, J. Coronavirus disease 2019
(COVID-19) CT findings: a systematic review and meta-analysis. J.
Am. Coll. Radiol. 17, 701–709 (2020).

10. Flores-Vega, V. R. et al. SARS-CoV-2: evolution and emergence of
new viral variants. Viruses 14, 653 (2022).

11. Young, B. E. et al. Effects of a major deletion in the SARS-CoV-2
genomeon theseverityof infectionand the inflammatory response: an
observational cohort study. Lancet 396, 603–611 (2020).

12. Carabelli, A. M. et al. SARS-CoV-2 variant biology: immune escape,
transmission and fitness. Nat. Rev. Microbiol. 21, 162–177 (2023).

13. Pascall, D. J. et al. Inconsistent directions of change in case severity
across successive SARS-CoV-2 variant waves suggests an
unpredictable future.medRxiv https://doi.org/10.1101/2022.03.24.
22272915 (2022).

14. Topol, E. J. High-performance medicine: the convergence of human
and artificial intelligence. Nat. Med. 25, 44–56 (2019).

15. Steyaert, S. et al. Multimodal data fusion for cancer biomarker
discovery with deep learning. Nat. Mach. Intell. 5, 351–362 (2023).

16. Steyaert, S. et al. Multimodal deep learning to predict prognosis in
adult and pediatric brain tumors. Commun. Med. 3, 44 (2023).

17. Cheerla, A. & Gevaert, O. Deep learning with multimodal
representation for pancancerprognosisprediction.Bioinformatics35,
i446–i454 (2019).

18. Hartmann, K., Sadée, C. Y., Satwah, I., Carrillo-Perez, F. &Gevaert, O.
Imaging genomics: data fusion in uncovering disease heritability.
Trends Mol. Med. 29, 141–151 (2023).

https://doi.org/10.1038/s41746-024-01128-2 Article

npj Digital Medicine |           (2024) 7:117 9

https://doi.org/10.55876/gis8.231104eq
https://doi.org/10.55876/gis8.231104eq
https://github.com/ahmetgorkemer/multimodal_covid19_study
https://github.com/ahmetgorkemer/multimodal_covid19_study
https://doi.org/10.1101/2022.03.24.22272915
https://doi.org/10.1101/2022.03.24.22272915
https://doi.org/10.1101/2022.03.24.22272915


19. Hutter, C. & Zenklusen, J. C. The Cancer Genome Atlas: creating
lasting value beyond its data. Cell 173, 283–285 (2018).

20. Shu,Y. &McCauley, J. GISAID: global initiative on sharing all influenza
data—from vision to reality. Eur. Surveill. 22, 30494 (2017).

21. Hatcher, E. L. et al. Virus variation resource—improved response to
emergent viral outbreaks. Nucleic Acids Res. 45, D482–d490
(2017).

22. Ning, W. et al. Open resource of clinical data from patients with
pneumonia for the prediction of COVID-19 outcomes via deep
learning. Nat. Biomed. Eng. 4, 1197–1207 (2020).

23. Hotelling, H. The most predictable criterion. J. Educ. Psychol. 26,
139–142 (1935).

24. Witten, D. M., Tibshirani, R. & Hastie, T. A penalized matrix
decomposition,withapplications to sparseprincipal componentsand
canonical correlation analysis. Biostatistics 10, 515–534 (2009).

25. Ding,D.Y., Li, S., Narasimhan,B. &Tibshirani, R.Cooperative learning
for multiview analysis. Proc. Natl Acad. Sci. USA 119,
e2202113119 (2022).

26. Hodcroft, E. B. CoVariants: SARS-CoV-2 mutations and variants of
interest. (2021).

27. Kandeel, M., Mohamed, M. E. M., Abd El-Lateef, H. M., Venugopala,
K. N. & El-Beltagi, H. S. Omicron variant genome evolution and
phylogenetics. J. Med. Virol. 94, 1627–1632 (2022).

28. Gruys, E., Toussaint, M. J., Niewold, T. A. & Koopmans, S. J. Acute
phase reaction and acute phase proteins. J. Zhejiang Univ. Sci. B 6,
1045–1056 (2005).

29. Simon, B. A., Christensen, G. E., Low, D. A. & Reinhardt, J. M.
Computed tomography studies of lungmechanics.Proc. Am. Thorac.
Soc. 2, 517–521 (2005).

30. Çullu, N. et al. Efficacy ofCT in diagnosis of transudates and exudates
in patients with pleural effusion. Diagn. Inter. Radiol. 20,
116–120 (2014).

31. Hie, B., Zhong, E. D., Berger, B. & Bryson, B. Learning the language of
viral evolution and escape. Science 371, 284–288 (2021).

32. Singh, R., Nagpal, S., Pinna, N. K. &Mande, S. S. Trackingmutational
semantics of SARS-CoV-2 genomes. Sci. Rep. 12, 15704 (2022).

33. Adjuik, T. A. & Ananey-Obiri, D. Word2vec neural model-based
technique to generate protein vectors for combating COVID-19: a
machine learning approach. Int. J. Inf. Technol. 14, 3291–3299 (2022).

34. Nagpal, S. et al. Genomic surveillance of COVID-19 variants with
language models and machine learning. Front. Genet. 13,
858252 (2022).

35. Chen, W. et al. Machine learning with multimodal data for COVID-19.
Heliyon 9, e17934 (2023).

36. Xu, Q. et al. AI-based analysis of CT images for rapid triage of COVID-
19 patients. npj Digital Med. 4, 75 (2021).

37. Tomaszewski,M. R. &Gillies, R. J. The biologicalmeaning of radiomic
features. Radiology 298, 505–516 (2021).

38. Zhou, M. et al. Non–small cell lung cancer radiogenomics map
identifies relationships between molecular and imaging phenotypes
with prognostic implications. Radiology 286, 307–315 (2018).

39. Bartholomeus, G. A. et al. Robustness of pulmonary nodule radiomic
features on computed tomography as a function of varying radiation
dose levels—a multi-dose in vivo patient study. Eur. Radiol. 33,
7044–7055 (2023).

40. Laino, M. E. et al. Prognostic findings for ICU admission in patients
with COVID-19 pneumonia: baseline and follow-up chest CT and the
added value of artificial intelligence. Emerg. Radiol. 29,
243–262 (2022).

41. Zhao, K. et al. Defining dementia subtypes through neuropsychiatric
symptom-linked brain connectivity patterns. bioRxiv https://doi.org/
10.1101/2023.07.02.547427 (2023).

42. Lee, H. et al. Multivariate association between brain function and
eating disorders using sparse canonical correlation analysis. PLoS
ONE 15, e0237511 (2020).

43. Jameson, J. L. et al. Harrison’s Principles of Internal Medicine, 20e
(McGraw-Hill Education, 2018).

44. Mehta, P. et al. COVID-19: consider cytokine storm syndromes and
immunosuppression. Lancet 395, 1033–1034 (2020).

45. Levey, A. S. et al. Definition and classification of chronic kidney
disease: a position statement from Kidney Disease: Improving Global
Outcomes (KDIGO). Kidney Int. 67, 2089–2100 (2005).

46. Newsome,P.N. et al.Guidelineson themanagement of abnormal liver
blood tests. Gut 67, 6–19 (2018).

47. Gong, K. et al. A multi-center study of COVID-19 patient prognosis
using deep learning-based CT image analysis and electronic health
records. Eur. J. Radiol. 139, 109583 (2021).

48. Oi, Y. et al. Prediction of prognosis in patients with severe COVID-19
pneumonia using CT score by emergency physicians: a single-center
retrospective study. Sci. Rep. 13, 4045 (2023).

49. Butler, L. et al. Image and structured data analysis for prognostication
of health outcomes in patientspresenting to theEDduring theCOVID-
19 pandemic. Int. J. Med. Inf. 158, 104662 (2021).

50. Chao, H. et al. Integrative analysis for COVID-19 patient outcome
prediction.Med. Image Anal. 67, 101844 (2021).

51. Jiao, Z. et al. Prognosticationof patientswithCOVID-19usingartificial
intelligence based on chest x-rays and clinical data: a retrospective
study. Lancet Digit. Health 3, e286–e294 (2021).

52. Houldcroft, C. J., Beale, M. A. & Breuer, J. Clinical and biological
insights from viral genome sequencing. Nat. Rev. Microbiol. 15,
183–192 (2017).

53. Global Influenza Hospital Surveillance Network. https://gihsn.org.
54. Aksamentov, I., Roemer, C., Hodcroft, E. B. & Neher, R. A. Nextclade:

clade assignment, mutation calling and quality control for viral
genomes. J. Open Source Softw. 6, 3773 (2021).

55. Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. &
Jermiin, L. S. ModelFinder: fast model selection for accurate
phylogenetic estimates. Nat. Methods 14, 587–589 (2017).

56. Hoang,D. T.,Chernomor,O., vonHaeseler, A.,Minh,B.Q.&Vinh, L. S.
UFBoot2: improving the ultrafast bootstrap approximation.Mol. Biol.
Evol. 35, 518–522 (2017).

57. Nguyen, L.-T., Schmidt,H. A., vonHaeseler, A. &Minh, B.Q. IQ-TREE:
a fast and effective stochastic algorithm for estimating maximum-
likelihood phylogenies.Mol. Biol. Evol. 32, 268–274 (2014).

58. Yu, G. Using ggtree to visualize data on tree-like structures. Curr.
Protoc. Bioinforma. 69, e96 (2020).

59. Mikolov, T., Chen, K., Corrado, G. & Dean, J. Efficient estimation of
word representations in vector space. arXiv https://doi.org/10.48550/
arXiv.1301.3781 (2013).

60. Zielezinski, A., Vinga, S., Almeida, J. & Karlowski, W. M. Alignment-
free sequencecomparison: benefits, applications, and tools.Genome
Biol. 18, 186 (2017).

61. Nawaz, M. S. et al. Using alignment-free and pattern mining methods
for SARS-CoV-2 genome analysis. Appl. Intell. 53,
21920–21943 (2023).

62. Hadfield, J. et al. Nextstrain: real-time tracking of pathogen evolution.
Bioinformatics 34, 4121–4123 (2018).

63. Rambaut, A. et al. A dynamic nomenclature proposal for SARS-CoV-2
lineages to assist genomic epidemiology. Nat. Microbiol. 5,
1403–1407 (2020).

64. Kuzmin, K. et al. Machine learning methods accurately predict host
specificity of coronaviruses based on spike sequences alone.
Biochem. Biophys. Res. Commun. 533, 553–558 (2020).

65. Sokhansanj, B. A. & Rosen, G. L. Predicting COVID-19 disease
severity from SARS-CoV-2 spike protein sequence by mixed effects
machine learning. Comput. Biol. Med. 149, 105969 (2022).

66. Mallory, J. D., Mallory, X. F., Kolomeisky, A. B. & Igoshin, O. A.
Theoretical analysis reveals the cost and benefit of proofreading in
coronavirus genome replication. J. Phys. Chem. Lett. 12,
2691–2698 (2021).

https://doi.org/10.1038/s41746-024-01128-2 Article

npj Digital Medicine |           (2024) 7:117 10

https://doi.org/10.1101/2023.07.02.547427
https://doi.org/10.1101/2023.07.02.547427
https://doi.org/10.1101/2023.07.02.547427
https://gihsn.org
https://gihsn.org
https://doi.org/10.48550/arXiv.1301.3781
https://doi.org/10.48550/arXiv.1301.3781
https://doi.org/10.48550/arXiv.1301.3781


67. Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach.
Learn. Res. 12, 2825–2830 (2011).

68. Fedorov, A. et al. 3D Slicer as an image computing platform for the
Quantitative Imaging Network. Magn. Reson. Imaging 30,
1323–1341 (2012).

69. Hofmanninger, J. et al. Automatic lung segmentation in routine
imaging is primarily a data diversity problem, not a methodology
problem. Eur. Radiol. Exp. 4, 50 (2020).

70. van Griethuysen, J. J. M. et al. Computational radiomics system to
decode the radiographic phenotype. Cancer Res. 77,
e104–e107 (2017).

Acknowledgements
This studywas fundedby theFoundation for InfluenzaEpidemiologyand the
Turkish Society of Internal Medicine. We gratefully acknowledge all data
contributors, i.e., the Authors and their Originating laboratories responsible
for obtaining the specimens and their Submitting laboratories for generating
the genetic sequence andmetadata and sharing via theGISAID Initiative, on
which this research is based. A.G.E. gratefully acknowledges financial
support for this project from the Fulbright Foreign Student Program,
sponsored by the U.S. Department of State and the Turkish Fulbright
Commission. Its contents are solely the author’s responsibility and do not
necessarily represent the official views of the Fulbright Program, the
Government of the United States, or the Turkish Fulbright Commission. The
research reported here was further supported by the National Cancer
Institute (NCI) under award: R01 CA260271. The content is solely the
authors’ responsibility and does not necessarily represent the official views
of the National Institutes of Health.

Author contributions
Conceptualization: A.G.E., M.D.T., Y.A.S., S.U. and O.G.; Methodology:
A.G.E., D.Y.D., C.S. and O.G.; Collecting the data: A.G.E., B.E., M.U., M.C.
and G.D.; Investigation: A.G.E., D.Y.D. and O.G.; Writing—original draft:
A.G.E., D.Y.D. and O.G.; Writing—review & editing: A.G.E., D.Y.D., B.E.,

M.U., M.C., C.S., G.D., M.N.O., M.D.T., A.T., Y.A.S., R.T., S.U. and O.G.;
Resources: M.D.T., S.U. and O.G.; Supervision: O.G.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41746-024-01128-2.

Correspondence and requests for materials should be addressed to
Ahmet Gorkem Er or Olivier Gevaert.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the
article’sCreativeCommons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2024

1Stanford Center for Biomedical Informatics Research (BMIR), Department of Medicine, Stanford University, Stanford, CA 94305, USA. 2Department of Health
Informatics, Graduate School of Informatics, Middle East Technical University, 06800 Ankara, Turkey. 3Department of Infectious Diseases and Clinical Microbiology,
HacettepeUniversityFacultyofMedicine, 06230Ankara, Turkey. 4Department ofBiomedicalDataScience,StanfordUniversity, Stanford,CA94305,USA. 5Department
of InternalMedicine, Divisionof IntensiveCareMedicine, HacettepeUniversity Faculty ofMedicine, 06230Ankara, Turkey. 6Department of InternalMedicine,Hacettepe
University Faculty of Medicine, 06230 Ankara, Turkey. 7Department of Radiology, Hacettepe University Faculty of Medicine, 06230 Ankara, Turkey. 8Department of
Statistics, Stanford University, Stanford, CA 94305, USA. e-mail: ahmetgorkemer@gmail.com; ogevaert@stanford.edu

https://doi.org/10.1038/s41746-024-01128-2 Article

npj Digital Medicine |           (2024) 7:117 11

https://doi.org/10.1038/s41746-024-01128-2
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
mailto:ahmetgorkemer@gmail.com
mailto:ogevaert@stanford.edu

	Multimodal data fusion using sparse canonical correlation analysis and cooperative learning: a COVID-19 cohort�study
	Results
	Descriptive analysis
	Visualization of the global SARS-CoV-2 strains using Word2Vec embedding
	Unsupervised pairwise data fusion using sparse�CCA
	Supervised multiview analysis using cooperative learning

	Discussion
	Methods
	Study design and data collection
	Sampling and next-generation viral genome sequencing protocol
	Identifying viral mutations and construction of phylogenetic�tree
	Viral feature preprocessing
	Imaging data collection and analysis
	Data fusion methodologies
	Statistical analysis
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




