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Generalization—a key challenge for
responsible AI in patient-facing clinical
applications
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Generalization – the ability of AI systems to apply
and/or extrapolate their knowledge to new data
whichmight differ from the original training data – is
a major challenge for the effective and responsible
implementation of human-centric AI applications.
Current debate in bioethics proposes selective
prediction as a solution. Here we explore data-
based reasons for generalization challenges and
look at how selective predictions might be
implemented technically, focusing on clinical AI
applications in real-world healthcare settings.

Whether in healthcare, finance or education, generalization is a core chal-
lenge for real-world impact in all areas of human-centric Artificial Intelli-
gence (AI). There are currently limited technical solutions that work for
generalization challenges in patient-facing clinical applications of machine
learning (referred to as clinicalML” hereafter). To address this, recent work
in bioethics1 advocates selective deployment of AI in healthcare and pro-
vides a thorough analysis of the ethical implications. “Selective deployment”
suggests that algorithms should not be deployed for groups under-
represented in their training datasets due to risks around poor or unpre-
dictable algorithm performance. Here, we use a case study in clinical ML to
explore available technical choices for the implementation of selective
deployment, with the goal of improving patient outcomes (see Fig. 1).

Why is generalization a challenge in clinical AI? In short, expressive
ML models, especially deep neural networks, are prone to overfitting,
i.e., they over rely on low-level features and learn spurious correlations
in a dataset, when underspecified2,3. Furthermore, training data
reflecting societal prejudices or lacking diversity can result in algo-
rithmic biases that can cause models to generalize less well to under-
represented groups. These problems are exacerbated in clinical
applications, where datasets are high dimensional, contain the inherent
uncertainties of biological systems, are often small and noisy, contain
large numbers of missing values, and may not be representative of the
target population4,5. Furthermore, pre-training for transfer learning, a
ML technique that can enable generalization6, is often inappropriate in
clinical contexts, given the significant difference between small,
domain-specific medical datasets and large, general-purpose pre-
training datasets like ImageNet.

ML models that do not generalize may fail silently, i.e. perform
significantly worse on new samples or individuals unnoticed, especially
if not externally validated7. Ignoring these challenges and applying ML

models in the clinic regardless is irresponsible as it may harm patients
from underrepresented groups.

Case study
Breast cancer predominantly affects biological women with a 100:1 ratio
compared to biological men8. Consequently, men experience substantially
worse health outcomes9, and are underrepresented in clinical datasets.
Differences in disease etiologymake it challenging for predictive algorithms
trained on data from biologically female to generalize to biological males.
For instance, a recent breast cancer prognostic algorithm10, trained only on
female data, offers accurate predictions for women but is expected to
underperform for biological men due to exclusion from the dataset.
Excludingmen from using this algorithm safeguards them from potentially
unreliable predictions, but raises ethical concerns about fairness and equal
access to advanced treatments.We could achieve equality betweenmen and
women by “leveling down”11 the standard of care for women to that ofmen,
e.g., by reducing the accuracy of predictions for women; or withholding the
algorithm completely. An emerging discussion in bioethics1 considers
withholding best-in-class treatment from women only to achieve fairness
across sexes unethical. It is argued that men’s standard of care would not
worsen if the prognostic algorithm became available to women. Deploying
these algorithms for women could, in fact, enhance overall breast cancer
research and AI development. Due to the prevalence of breast cancer and
data limitations, they recommend selective deployment of such algorithms
for responsible and effective use.

While biological variances such as sex provide a rationale for selective
deployment in examples such as our breast cancer case study, selective
deployment based on sociocultural factors such as gender presents a more
complex issue which we explore below (see Ethical considerations).

What is “responsibleAI” inclinical applications?As in the breast cancer
algorithm example, calls for strict fairness may not necessarily be a
responsible approach in clinical AI. Instead, the criterion for responsible
use ofML iswhetherwe can trust the predictions of amodel. For brevity and
clarity of argument, we focus our discussion on predictive models; how-
ever, the same arguments equally apply to other ML algorithms, such as
unsupervised or generative models. First, we need to be able to trust that a
model produces accurate predictions on any given patient’s input data. For
this, input data during deployment should be similar to the training,
validation and test datasets where the model is validated and is shown to
perform reliably. Second, where inputs during deployment are drawn from
a different data distribution, or where they are ambiguous or inherently
difficult, we need the model to “know what it doesn’t know”12.

In summary: to trustmodel predictions,weneed to identify the samples–
individuals, subgroups and features – on which the model performs well,
deferring others to complementary approaches, to prevent model failures and
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potential harm to patients13. Notably, the subgroups on which we cannot
trustmodel predictionsmay not alignwith traditional patient stratifications
such as sex, age or ethnicity and may often be intersectional.

Selecting samples—current practice. If the exclusion of samples
upfront for training—as in our case study—seems extreme, this is in fact
commonpractice in theMLandhealthcare communities, but it is currently
largely performed ad hoc and supported by little documentation or prin-
cipled reasoning. For example, clinical trials for triple-negative breast
cancer often exclude patients who are HER2-negative and have low
estrogen receptor expression, even though they represent a significant
proportion of breast cancer cases (15% in the United States)14. Another
common practice is to exclude samples with “too many” missing values,
which may or may not be missing at random. This often depends on the
context and individual researcher discretion, so cutoff values greatly vary
between studies. This motivates the usage of principled, quantitative
algorithmic selection approaches, which have been shown to improve
model performance15.

Algorithmic selection of samples for trustworthy predictions. Broadly,
we can distinguish between sample/data-centric and model-centric
methods for selecting the samples on which we can trust model predic-
tions, as outlined in Fig. 2.

Sample/data-centric methods—i.e. data curation, or data sculpting15—
aim toquantify the value and importanceof individual samples andfilter out
samples before model training. For example, this could mean removing
samples from genome-wide association studies, where uncertainty in
polygenic risk score estimates for individuals can have a large impact on
subsequent analyses16, or removing samples from clinical datasets due to
poor quality (artifacts/measurement errors) or bias at the individual sample
level17. By removing noisy or mislabeled samples from a training dataset,
model training and performance can be increased for the remaining
samples18. For examples and methods, see4,15. Data curation by rejecting
samples that do notmatch the curation criteria during inference is themost

stringent way to prevent untrustworthy model predictions. Where appro-
priate given other considerations of utility, fairness and justice, this
approach could be applied in the high-risk scenario of clinical AI, where
biases in the training data, coupled with subsequent inaccurate model
predictions, could have serious negative consequences for individual
patients. These sample- or data-centric methods could further be supple-
mented with the model-centric methods described next.

Model-centric methods – to be trustworthy, it is crucial for models to
indicatewhenpredictions for samples are likely to be incorrect, i.e. we desire
estimates of how uncertain a model is for any given prediction. This is
especially relevant for deep neural networks, which can provide over-
confident point estimates. Uncertainty estimation provides a principled
solution and can roughly be grouped into Bayesian or approximate-Baye-
sian, model distillation and ensemble-based methods19, with the estimates
often decomposed into uncertainty arising from the model (epistemic
uncertainty) and uncertainty inherent in the data (aleatoric uncertainty).
Another orthogonal strand of approaches is conformal prediction20, which
produces prediction intervals with coverage guarantees, where the interval
size reflects uncertainty. Irrespective of howmodel uncertainty is estimated,
typically an uncertainty threshold is required, below which predictions are
considered too unreliable and therefore untrustworthy. Uncertain model
predictionsmost likely arise for samples that do notmatch the training data
distribution or that exhibit in-distribution inconsistency due to low cover-
age. These samples can also directly be flagged with methods from the
relatedfields of anomaly or novelty detection, open-set recognition and out-
of-distribution (OOD) detection21.

It is worth noting that any of the aforementioned technical approa-
ches to sample selection may have similar failure modes to the predictive
model itself: if they do not generalize well, they will not provide the
required safeguarding for exactly those samples for which it is most
needed. We therefore recommend not exclusively relying on model-
centric methods in medium- and high-risk clinical applications, but to
always involve a human-in-the-loop where the outcome directly impacts
individual patients.

Fig. 1 | The generalization challenge and potential
solutions. a ML models trained on biased or non-
representative datasets may fail to generalize to a
subset of patients. b Potential solutions to the gen-
eralization challenge (left to right). Data collection
augments training datasets with additional (real or
synthetic) data so models can learn on all patients
encountered during deployment. Limitation: data
collection might be expensive or logistically chal-
lenging. Model-centric selection uses an additional
ML model, e.g. an out-of-distribution (OOD)
detector, or the ML model itself, e.g. model uncer-
tainty, to select samples on which model outputs are
trustworthy and to defer others to a clinician. Lim-
itation: reliance on the model performing sample
selection and patient exclusion. Sample-centric
selection excludes samples where untrustworthy
model outputs are expected either upfront or during
deployment, deferring these samples to clinicians.
Limitation: if sample exclusion leads to coverage
gaps, it can harm model performance by exacer-
bating existing biases. Head icons from https://
icons8.com/.
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Ethical considerations. Proactive sample selection for trustworthymodel
predictions could be problematic if it would consistently exclude/defer
individuals from already marginalized subgroups. In particular, consider
selective deployment not based on biological determinants but instead on
socio-cultural constructs. In this case, proactive sample selection might
unintentionally be grounded in historical marginalization and could
thereforepropagate injustice, rather than accounting for justifiedbiological
variances. Crucially, where biological and socio-cultural concepts interact,
socio-cultural factors must be considered carefully even when selecting
samples based on biological determinants. The distinction between bio-
logical determinants and socio-cultural constructs is important because
individuals from marginalized subgroups are more likely to be under-
represented or missing from datasets used for model training, thus
exacerbating existing social and health inequalities. The literature con-
siders broadly three options to address this issue, whichwe summarize; for
a more in-depth ethical analysis, see1.

Option 1:Delay deployment until algorithms work equally well for all,
avoiding harm but delaying benefits for those where current models are
accurate.

Option 2: Expedite deployment, ignoring generalization issues, risking
harm to underrepresented groups.

Option 3: Selectively deploy, using algorithmswhere safe and deferring
others to human medical professionals.

Options 1 and 2 pose ethical issues. Delaying deployment until
achieving equitable performance across all subgroups might not be prac-
tically feasible and could needlessly harm or “level down” health outcomes
to those who could be helped now, while indiscriminately expediting
deployment risks harming underrepresented patients. Unfortunately, with
pressure to bring ML to the clinic to improve efficiency and patient out-
comes, there are already examples of indiscriminate deployment that may
harm minority groups22. Option 3, selective deployment is a potentially
contentious option emerging in the bioethics literature1 which, under cir-
cumstances where the withholding of deployment or indiscriminate
deployment are considered unethical, could serve as an intermediary
solution until equal performance can be reached across all subgroups.
Importantly, selective deployment must be balanced with a commitment to
equity: any potential discriminatory consequences must be proactively

mitigated, for example, individuals excluded over concerns of subparmodel
performance should be deferred to an expert clinician in order to ensure an
equivalent standard of care.

Balancing practicality with equity is a pervasive issue that will only
become more pressing as AI is increasingly applied in healthcare settings.
Thus, rather than advocating for selective deployment per se or trying to
resolve the associated ethical issues, our aim in this work is to highlight
generalization challenges as an underlying ML problem, and to make the
consideration of this optionmuchmore technically informed by pointing to
principled algorithmic approaches (see Algorithmic selection of samples for
trustworthy predictions). Furthermore, we hope to bring the bioethical
debate on selective deployment to the ML and healthcare community to
start a conversation with a broad range of stakeholders, including patient
groups. Although selective deployment has the potential to temporarily
maintainhealthdisparities, debate is neededwhether in the current data and
modeling environment in healthcare, this option may represent the most
ethical tradeoff between competing considerations around utility, safety,
and equity.

Future research and moving forward. While we outline approaches for
selective prediction whenMLmodels do not generalize, we also encourage
future research into generalization in the small sample regime in clinical
ML and other areas of human-centric AI. To begin with, we need a better
understanding of why domain generalization often does not outperform
expected riskminimization.Another promisingdirection is the use orfine-
tuning of large-scale, generalist foundation models on scarce data or
exploring training paradigms, such as model distillation or contrastive
learning adapted to the low-data regime. Furthermore, synthetic data may
improve model generalization, both to augment small datasets during
training and for simulating real-world distribution shifts during model
evaluation, yet should leverage fair generation approaches e.g. 23 to prevent
the propagation of biases. Finally, more research is needed on active data-
centric AI techniques to guide data collection and valuation, which are
essential for equitable deployment of clinical ML.

Putting ML systems into practice takes time, but updating these sys-
tems with new data or newmodels is comparatively straightforward. Thus,
we should find ethical ways to deploy ML algorithms in the clinic or other

Fig. 2 | Sample selection underpins trustworthy predictions. Sample selection can be achieved by data-centric methods of data curation/sculpting before training themodel, or
model-centric sample deferral with uncertainty estimation. Out-of-distribution and anomaly detection methods lie at the intersection, wherein we flag samples preemptively.
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areas of human-centric AI, despite current generalization challenges. We
encourage ML researchers to explore sample selection strategies – appro-
priatelymatched to the risk level and context of theMLapplication– as they
are looking for ways tomake their clinicalML applications trustworthy and
safe for all patients.

Reporting summary. Further information on research design is available
in the Nature Research Reporting Summary linked to this article.
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