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Language models (LMs) such as BERT and GPT have revolutionized natural language processing
(NLP). However, the medical field faces challenges in training LMs due to limited data access and
privacy constraints imposedby regulations like theHealth InsurancePortability andAccountability Act
(HIPPA) and the General Data Protection Regulation (GDPR). Federated learning (FL) offers a
decentralized solution that enables collaborative learningwhile ensuring data privacy. In this study,we
evaluated FL on 2 biomedical NLP tasks encompassing 8 corpora using 6 LMs. Our results show that:
(1) FL models consistently outperformed models trained on individual clients’ data and sometimes
performed comparably withmodels trainedwith polled data; (2) with the fixed number of total data, FL
models training with more clients produced inferior performance but pre-trained transformer-based
models exhibited great resilience. (3) FLmodels significantly outperformedpre-trained LLMswith few-
shot prompting.

The recent advances in deep learning have sparked the widespread
adoption of language models (LMs), including prominent examples of
BERT1 andGPT2, in the field of natural language processing (NLP). These
LMs are trained on massive amounts of public text data, comprising
billions of words, and have emerged as the dominant technology for
various linguistic tasks, including text classification3,4, text generation5,6,
information extraction7–9, and question answering10,11. The success of LMs
can be largely attributed to their ability to leverage large volumes of
training data. However, in privacy-sensitive domains like medicine, data
are often naturally distributed, making it difficult to construct large cor-
pora to train LMs. To tackle the challenge, the most common approach
thus far has been tofine-tune pre-trained LMs for downstream tasks using
limited annotated data12,13. Nevertheless, pre-trained LMs are typically
trained on text data collected from the general domain, which exhibits
divergent patterns from that in the biomedical domain, resulting in a
phenomenon known as domain shift. Compared to general text, biome-
dical texts can be highly specialized, containing domain-specific ter-
minologies and abbreviations14. For example, medical records and drug
descriptions often include specific terms that may not be present in
general language corpora, and the terms often vary among different
clinical institutes. Also, biomedical data lacks uniformity and

standardization across sources, making it challenging to develop NLP
models that can effectively handle different formats and structures.
Electronic Health Records (EHRs) from different healthcare institutions,
for instance, can have varying templates and coding systems15. So, direct
transfer learning from LMs pre-trained on the general domain usually
suffers a drop in performance and generalizability when applied to the
medical domain as is also demonstrated in the literature16. Therefore,
developing LMs that are specifically designed for the medical domain,
using large volumes of domain-specific training data, is essential. Another
vein of research explores pre-training the LM on biomedical data, e.g.,
BlueBERT12 and PubMedBERT17. These LMs were either pre-trained on
mixed-domain data (first pre-train on the general text and then keep pre-
train onbiomedical text) or directly pre-trainedondomain-specific public
medical datasets, e.g., PubMed literature and the Medical Information
Mart for Intensive Care (MIMIC III)18 and have shown improved per-
formances compared to classical methods such as conditional random
field (CRF)19 and recurrent neural network (RNN) (e.g., long-short-term
memory (LSTM)20) in many biomedical text mining tasks8,9,12,16,21.
Nonetheless, it is important to highlight that the efficacy of these pre-
trained medical LMs heavily relies on the availability of large volumes of
task-relevant public data, which may not always be readily accessible.
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All these mentioned above represent the classical centralized learning
regime, which involves aggregating data from distributed data sites and
training a model in a single environment. However, this approach poses
significant challenges in medicine, where data privacy is crucial and data
access is restricted due to regulatory concerns. Thus, in practice, people can
only perform training with local datasets—single-client training. The
drawback comes when the local dataset is small and often gives poor per-
formance when evaluating an external dataset—poor generalization. To
take advantage of the massively distributed data as well as improve the
model generalizability, federated learning (FL) was initialized in 201622 as a
novel learning scheme to empower training with a decentralized environ-
ment and achieve many successes in critical domains with data privacy
restriction23–25. In an FL training loop, clients jointly train a shared global
model by sharing the model weights or gradients while keeping their data
stored locally. By bringing the model to the data, FL strictly ensures data
privacy while achieving competitive levels of performance compared to a
model trained with pooled data. While there is a rise of research showing
great promise of applying FL in general NLP26,27, applications of FL in
biomedical NLP are still under-explored. Existing works in FL on biome-
dical NLP are either focused on optimizing one task28,29 or trying to improve
communication efficiency28. The current literature lacks a comprehensive
comparison of FL on varied biomedical NLP tasks with real-world pertur-
bations. To close this gap, we conducted an in-depth study of two repre-
sentative NLP tasks, i.e., named entity recognition (NER) and relation
extraction (RE), to evaluate the feasibility of adopting FL (e.g., FedAvg30 and
FedProx31) with LMs (e.g., Transformer-based models) in biomedical NLP.
Our study aims to provide an in-depth investigation of FL in biomedical
NLP by studying several FL variants on multiple practical learning sce-
narios, includingvaried federation scales, differentmodel architectures, data
heterogeneities, and comparison with large language models (LLMs) on
multiple benchmark datasets. Our major findings include:
1. When datawere independent and identically distributed (IID),models

trained using FL, especially pre-trained BERT-based models,
performed comparable to centralized learning, a significant boost to
single-client learning. Even when data were non-IID distributed, the
gap can be filled by using alternative FL algorithms.

2. Larger models exhibited better resistance to the changes in FL scales.
With a fixed number of data, the performance of FL models overall
degraded as the clients’ size increased. However, the deterioration
diminished when combined with larger pre-trained models such as
BERT-based models and GPT-2.

3. FL significantly outperformed pre-trained LLMs, e.g., GPT-4, PaLM2,
and Gemini Pro, with few-shot prompting.

Results
In this section, we present ourmain results of analysis on FLwith a focus on
several practical facets, including (1) learning tasks, (2) scalability, (3) data
distribution, (4) model architectures and sizes, and (5) comparative
assessments with LLMs.

FedAvg, single-client, and centralized learning for NER and
RE tasks
Table 1offers a summaryof theperformance evaluations forFedAvg, single-
client learning, and centralized learning on five NER datasets, while Table 2
presents the results on three RE datasets. Our results on both tasks con-
sistently demonstrate that FedAvg outperformed single-client learning.
Notably, in cases involving large data volumes, such as BC4CHEMD and
2018 n2c2, FedAvg managed to attain performance levels on par with
centralized learning, especially when combined with BERT-based pre-
trained models.

Influence of FL scale on the performance of LMs
In clinical applications, there are two distinct learning paradigms. The first
involves small-scale client cohorts, each equipped with substantial data
resources, often seen in collaborationswithin hospital networks. In contrast,

the second encompasses widely distributed clients, characterized by more
limited data holders, often associated with collaborations within clinical
facilities or onmobile platforms.We investigated the performance of FL on
the two learning paradigms by varying client group sizes while maintaining
a fixed total training data volume. The results are summarized in Fig. 1,
revealing a consistent trend: notably, largermodels, such as those backed by
BERT and GPT-2 architectures, exhibited great resilience to fluctuations in
federation scales. Incontrast, the lightweightmodel, as ofBiLSMT-CRF,was
susceptible to alterations of scale, resulting in a rapid deterioration in per-
formance as the number of participating clients increased.

Comparison of FedAvg and FedProx with data heterogeneity
Biomedical texts often exhibit high specialization due to distinct protocols
employed by different hospitals when generatingmedical records, resulting
in great variations—sublanguage differences. Therefore, FL practitioners
should account for such data heterogeneity when implementing FL in
healthcare systems. We simulated a real non-IID scenario by emulating
BC2GM and JNLPBA as two clients and jointly performing FL. We con-
sidered two FL algorithms including FedAvg and FedProx; both are widely
deployed in practice. For comparison, we also studied a simulated IID
setting using the 2018 n2c2 dataset by random splitting. Detailed analysis of
the non-IID/IID distribution can be found in Supplementary Fig. 1 and
Supplementary Table 3. As shown in Table 3, we observed that the per-
formance of FedProx was sensitive to the choice of the hyper-parameter μ.
Notably, a smaller μ consistently resulted in improved performance. When
μwas carefully selected, FedProx outperformed FedAvgwhen the data were
non-IIDdistributed (lenient F1 score of 0.994 vs. 0.934 and strict F1 score of
0.901 vs. 0.884). However, the difference between the two algorithms was
mostly indistinguishable when the data were IID distributed (lenient
F1 score of 0.880 vs. 0.879 and strict F1 score of 0.820 vs. 0.818).

Impact of the LM size on the performance of different training
schemes
We investigated the impact of model size on the performance of FL. We
compared 6 models with varying sizes, with the smallest one comprising
20M parameters and the largest one comprising 334M parameters. We
picked the BC2GM dataset for illustration and anticipated similar trends
wouldhold for other datasets aswell.As shown inFig. 2, inmost cases, larger
models (represented by large circles) overall exhibited better test perfor-
mance than their smaller counterparts. For example, BlueBERT demon-
strated uniform enhancements in performance compared to BiLSTM-CRF
and GPT2. Among all the models, BioBERT emerged as the top performer,
whereas GPT-2 gave the worst performance.

Comparison between FL and LLM
In light of thewell-demonstratedperformance of LLMsonvarious linguistic
tasks, we explored the performance gap of LLMs to the smaller LMs trained
using FL. Notably, it is usually not common to fine-tune LLMs due to the
formidable computational costs and protracted training time. Therefore, we
utilized in-context learning that enables direct inference from pre-trained
LLMs, specifically few-shot prompting, and compared them with models
trainedusingFL.We followed the experimental protocol outlined in a recent
study32 and evaluated all the models on two NER datasets (2018 n2c2 and
NCBI-disease) and two RE datasets (2018 n2c2, and GAD). The results, as
summarized in Fig. 3, show that (1) a longer prompt with more input
examples (e.g., 10-shot and 20-shot) often enhances the performance of
LLMs; and (2) FL, whether implemented with a BERT-based model
(BlueBERT) or GPT-based model (GPT-2), consistently outperformed
LLMs by a large margin.

Discussion
In this study, we visited FL for biomedical NLP and studied two established
tasks (NER andRE) across 7 benchmark datasets.We examined 6 LMswith
varying parameter sizes (ranging from BiLSTM-CRF with 20M to
transformer-based models up to 334M parameters) and compared their
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performanceusing centralized learning, single-client learning, and federated
learning.Onalmost all the tasks,we showed that federated learning achieved
significant improvement compared to single-client learning and oftentimes
performed comparably to centralized learning without data sharing,
demonstrating it as an effective approach for privacy-preserved learning
with distributed data. The only exception is inTable 2,where the best single-
client learningmodel (check the standard deviation) outperformed FedAvg
when using BERT and Bio_ClinicalBERT on EUADR datasets (the average
performance was still left behind, though).We believe this is due to the lack
of training data. As each client only owned 28 training sentences, the data
distribution, although IID,washighly under-represented,making it hard for
FedAvg to find the global optimal solutions. Surprisingly, FL achieved
reasonably good performance even when the training data was limited (284
total training sentences from all clients), confirming that transfer learning
from either the general text domain (e.g., BERT and GPT-2) or biomedical
text domain (e.g., BlueBERT, BioBERT, Bio_ClinicalBERT) is beneficial to
the downstreambiomedicalNLP task andpretraining onmedical data often
gives a further boost. Another interesting finding is that GPT-2 always gave
inferior results compared to BERT-basedmodels.We believe this is because
GPT-2 is pre-trained on text generation tasks that only encode left-to-right
attention for the next word prediction. However, this unidirectional nature
prevents it from learning more about global context, which limits its ability
to capture dependencies between words in a sentence.

In the sensitivity analysis of FL to client sizes, we found there is a
monotonic trend that, with a fixed number of training data, FL with fewer
clients tends to perform better. For example, the classical BiLSTM-CRF
model (20M), with a fixed number of total training data, performs better
with few clients, but performance deteriorateswhenmore clients join in. It is
likely due to the increased learning complexity as FL models need to learn
the inter-correlation of data across clients. Interestingly, the transformer-
based model (≥108M), which is over 5 sizes larger compared to BiLSMT-
CRF, is more resilient to the change of federation scale, possibly owing to its
increased learning capacity.

We analyzed the performance of FedProx in real-world non-IID sce-
narios and compared it with FedAvg to study the behavior of different FL
algorithms under data heterogeneity. Although the FedProx achieved
slightly better performance than FedAvg when the data were non-IID dis-
tributed, it is very sensitive to the hyper-parameter μ, which strikes to
balance the local objective function and the proximal term. Specifically,
when data was IID, and μ was set to a large value (e.g., μ = 1), FedProx
yielded a 2.4% lower lenient F1-score compared to FedAvg. When the data
were non-IID, this performance gap further widened to 5.4%. It is also
noteworthy thatwhenμ is set to0, andall the clients are forced toperforman
equal number of local updates, FedProx essentially reverts to FedAvg.

We also investigated the impact of model size on the performance of
FL. We observed that as the model size increased, the performance gap
between centralized models and FL models narrowed. Interestingly, Bio-
BERT, which shares the same model architecture and is similar in size to

Table 2 | Comparison of FedAvg with centralized learning and
single-client learning on RE task measure by macro F1-score

Model Method 2018 n2c2 EUADR GAD

BERT Centralized 0.947 ± 0.001 0.750 ± 0.040 0.738 ± 0.028

Single (avg) 0.892 ± 0.007 0.522 ± 0.111 0.642 ± 0.017

FedAvg 0.946 ± 0.002 0.527 ± 0.008 0.703 ± 0.021

BlueBERT Centralized 0.950 ± 0.002 0.582 ± 0.109 0.755 ± 0.007

Single (avg) 0.898 ± 0.020 0.452 ± 0.039 0.616 ± 0.030

FedAvg 0.950 ± 0.002 0.548 ± 0.073 0.714 ± 0.018

BioBERT Centralized 0.942 ± 0.002 0.737 ± 0.049 0.783 ± 0.007

Single (avg) 0.901 ± 0.006 0.525 ± 0.094 0.684 ± 0.015

FedAvg 0.942 ± 0.002 0.718 ± 0.037 0.750 ± 0.008

Bio_ClincialBERT Centralized 0.950 ± 0.001 0.741 ± 0.067 0.743 ± 0.014

Single (avg) 0.904 ± 0.006 0.514 ± 0.101 0.623 ± 0.018

FedAvg 0.946 ± 0.003 0.578 ± 0.057 0.695 ± 0.009

GPT-2 Centralized 0.951 ± 0.004 0.684 ± 0.097 0.709 ± 0.004

Single (avg) 0.899 ± 0.009 0.468 ± 0.105 0.630 ± 0.017

FedAvg 0.946 ± 0.003 0.547 ± 0.086 0.721 ± 0.009

The reported values represent the mean and standard deviation over three repeated experimentsa.
aFedAvg that matched (with overlapped intervals) or surpassed the centralized learning of the same
model are bolded and the highest scores for each corpus are underlined.

Fig. 1 | Performance of FL models with varying numbers of clients.We tested
models on 2018 n2c2 (NER) and evaluated them using the F1 score with lenient
matching scheme.

Table 3 | Comparison of FedAvg with centralized learning and single-client learning using BioBERT

Method µ IID (2018 n2c2) non-IID (BC2GM & JNLPBAS)

lenient strict lenient strict

Centralized – 0.884 ± 0.002 0.823 ± 0.002 0.964 ± 0.001 0.929 ± 0.000

FedAvg – 0.879 ± 0.002 0.818 ± 0.003 0.934 ± 0.003 0.884 ± 0.003

FedProx 1 0.855 ± 0.003 0.790 ± 0.005 0.880 ± 0.001 0.772 ± 0.002

0.5 0.868 ± 0.001 0.809 ± 0.002 0.881 ± 0.002 0.777 ± 0.001

0.1 0.872 ± 0.003 0.814 ± 0.004 0.897 ± 0.002 0.817 ± 0.002

0.01 0.878 ± 0.003 0.819 ± 0.002 0.933 ± 0.002 0.884 ± 0.003

0.001 0.880 ± 0.002 0.820 ± 0.001 0.944 ± 0.002 0.901 ± 0.002

We select the value of μ (a hyper-parameter in FedProx) as suggested by the FedProx paper. The reported values represent the mean and standard deviation over three repeated experimentsa.
aFedAvg that matched (with overlapped intervals) or surpassed the centralized learning of the same model are bolded and the highest scores for each corpus are underlined.
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BERT and Bio_ClinicalBERT, performs comparably to larger models (such
as BlueBERT), highlighting the importance of pre-training for model per-
formance. Overall, the size of themodel is indicative of its learning capacity;
large models tend to perform better than smaller ones. However, large
models require longer training time and more computation resources,
which results in a natural trade-off between accuracy and efficiency.

Compared with LLMs, FL models were the clear winner regarding
prediction accuracy. We hypothesize that LLMs are mostly pre-trained on
the general text and may not guarantee performance when applied to the
biomedical text data due to the domain disparity. As LLMs with few-shot
prompting only received limited inputs from the target tasks, they are likely
to perform worse than models trained using FL, which are built with suf-
ficient training data. To close the gap, specialized LLMs pre-trained on
medical text data33 ormodelfine-tuning34 can beused to further improve the
LLMs’ performance. Another interesting fact is that with more input
examples (e.g., 10-shot and 20-shot), LLMs often demonstrate increased
prediction performance, which is intuitive as LLMs receive more knowl-
edge, and the performance should be increased accordingly.

While seeing many promising results of FL for LMs, we acknowledge
our study suffers from the following limitations: (1) most of our experi-
ments, excluding the non-IID study, are conducted in a simulated envir-
onment with synthetic data split, which may not perfectly align with the
distribution patterns of real-world FL data. (2) we mostly focused on hor-
izontal FL but have not extended to vertical FL35. (3) we have not considered
FL combined with privacy techniques such as differential privacy36 and
homomorphic encryption37. To address these limitations and further
advance our understanding of FL for LMs, our future studywill focus on the
real-world implementation of FL and explore the practical opportunities

and challenges in FL, such as vertical FL and FL combined privacy tech-
niques. We believe our study will offer comprehensive insights into the
potential of FL for LMs, which can serve as a catalyst for future research to
develop more effective AI systems by leveraging distributed clinical data in
real-world scenarios.

Methods
NLP tasks and corpora
We compared FL with alternative training schemes on 8 biomedical NLP
datasetswith a focuson twoNLP tasks:NER(5 corpora) andRE (3 corpora).
The NER and RE are two established tasks for information extraction in
biomedical NLP. Given an input sequence of tokens, the goal of NER is to
identify and classify the named entities, such as diseases and genes, present
in the sequence. RE is often the follow-up task that aims to discover the
relations between pairs of named entities. For example, a gene-disease
relation (BRCA1-breast cancer) can be identified in a sentence: “Mutations
of BRCA1 gene are associated with breast cancer”. For RE tasks, we take the
entity positions as given and formulate the problem as follows: given a
sentence and the spans of two entities, the task is to determine the rela-
tionship between the two entities.

We select the corpora using the following protocols: (1) Publicity.
The corpora should be publicly available to ensure that the results
obtained are reproducible. (2) Popularity. The corpora should be used in
other well-cited papers so that the quality of the data is ensured. (3)
Diversity. The corpora should represent as many as the real-world bio-
medical NLP tasks. A summary of the selected datasets can be found in
Table 4; we defer to Supplementary Methods for more detailed descrip-
tions of each dataset.

Fig. 3 | Comparison of LLMs using few-shot
prompting and small LMs (BlueBERT and GPT-
2) trained with FL onNER (upper) and RE (lower)
tasks evaluated based on the F1-score (lenient
matching for NER tasks). A complete evaluation,
including the strict matching and running time
analysis, can be found in Supplementary Table 1 and
Supplementary Table 2.

Fig. 2 | Comparison of model performance with
different sizes, measured by the number of train-
able parameters on the BC2GMdataset.The size of
the circle tells the number of model parameters,
while the color indicates different learning methods.
The x-axis represents the mean test F1-score with
the lenient match (results are adapted fromTable 1).
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Federated learning algorithms
FL represents a family of algorithms that aims to train models in a dis-
tributed environment in a collaborativemanner. Consider a scenario where
there are K clients with distributed data D ¼ fD1;D2; :::;Dkg, where
Di ¼ DXi ×Yi

, and Xi and Yi are the input and output space, respectively.
The typical FL aims to solve the optimization problem as in Eq. (1)

XK

i¼1
PiFi wð Þwhere Fk ¼

X Dkj j
j¼1

Lw Xj;Yj

� �
; ð1Þ

where w denote the weights of the model being learned, Fi is the local
objective of the ith clients, and pi is the weight of the ith clients such that
pi > 0 and

PK
i¼1pi ¼ 1. The weights are usually determined by the quantity

of clients’ training samples. For example, it equals 1
K when clients share the

same amount of training data.
In an FL game, there are two types of players: server and client. The

server is the compass that navigates the whole process of FL including
signaling the start and end of federated learning, synchronizing the local
model updates, and dispatching the updated models. The clients are
responsible for fetchingmodels fromthe server, updatingmodels using their
local data, and sending the updated models back to the server.

Throughout the whole process, there are four steps: (1) the clients use
their own data to optimize the local objectives—local updates, (2) local
clients upload the updated model or gradients to the server, (3) the server
acquires the local models and synchronize the updates—model aggrega-
tion, and (4) server dispatch the models to the clients. While different FL
algorithms may have specialized designs for local updates or model aggre-
gation, they share the same training paradigm.

We considered the two most popular FL algorithms called Federated
Averaging (FedAvg)30 and another variant FedProx31. FedAvg is the most
basic and standard FL algorithm that uses stochastic gradient descent (SGD)
to progressively update the local model. More specifically, each client locally
takes afixednumber of gradient descent steps on their localmodel using their
local training data. On another hand, the server will aggregate these local
models by taking theweighted average as the resultingnewmodel for thenext
round. However, in FedAvg, the number of local updates can be determined
by the size of the data. When the size of the data varies, the local updates
performed locally can be significantly different. FedProx was introduced to
tackle the issue of heterogeneous local updates in FedAvg. By adding a
proximal term to the objective of the local update, the impact of variable local
updates is suppressed.More specifically, at iteration t, the inner local updates
are trying tofind the solution thatminimizes theobjective, as shown inEq. (2)

Minw
1
nk

Xnk

i¼1
Lw Xi;Yi

� �þ μ

2
w� wt
�� ���� ��; ð2Þ

where wt is the weights of the network from iteration t. A comparison of
FedAvg and FedProx can be found in Algorithm 1 and Algorithm 2.

Algorithm 1. Federated learning algorithms (FedAvg/FedProx)
Notation:Xi indicates data fromclient i,K is the totalnumberof clients,

T is the maximum training round, n is the sum of n1 to nk, pi is the weights
for the ith client

Initialize server model weights w(1)
Initialize client model weights wi 8 i ¼ 1; 2; . . . ;K
For each round t = 1, 2,… T do
Send server model weight wðtÞ to each client
For each client k ¼ 1; 2; . . . ;K do
Client k perform LocalUpdate ðXk;Yk;wkÞ ← Algorithm 2
End for
w t þ 1ð Þ ¼ PK

i¼1 piwi ←model aggregation
End for

Algorithm 2. Local model training using mini-batch stochastic gradient
descent (LocalUpdate) (FedAvg/FedProx)

Notation: R is the local update round, B is the number of batches, f wr
is

theneural networkparameterizedbywr ,η is the learning rate,μ is thehyper-
parameter in FedProx

For each round r ¼ 1; 2; . . . ;R do / Repeat until find the approximate
minimizer of w≈argminwLðf wr

ðXbÞ;YbÞ þ μ
2 jjwk � wk tð Þjj2

Randomly shuffle Xk and create B bat-
ches ððX1;Y1Þ; ðX2;Y2Þ; . . . ; ðXB;YBÞÞ

Lwr
¼ Lðf wr

ðXbÞ;YbÞ þ μ
2 jjwk�wk tð Þjj2

For each mini-batch b ¼ 1; 2; . . . ;B do
wrþ1 ¼ wr � η∇Lwr

ðXb;YbÞ
End for

Study design
As shown in Fig. 4, we explored three learning methods: (1) federated
learning, centralized learning, and single-client learning. To simulate the
conventional learning scenario, we varied the data scale and conducted the
following experiments: centralizing all client data to train a single model
(centralized learning) and training separate models on each client’s local
data (single-client learning).

Models. To better understand the effect of LMs on FL, we chose models
with various sizes of parameters from 20M to 334M, including Bidir-
ectional Encoder Representations from Transformer (BERT)1, and
Generative Pre-trained Transformer (GPT)38, as well as classical RNN-
based model like BiLSTM-CRF39. BERT-based models utilize a trans-
former encoder and incorporate bi-directional information acquired
through two unsupervised tasks as a pre-training step into its encoder.
Different BERT models differ in their pre-training source dataset and
model size, deriving many variants such as BlueBERT12, BioBERT8, and
Bio_ClinicBERT40. BiLSTM-CRF is the only model in our study that is
not built upon transformers. It is a bi-directional model designed to
handle long-term dependencies, is used to be popular for NER, and uses

Table 4 | List of corpora and their statistics

Corpus Entity/ Relation Type Corpora type year Task Train Dev Test

2018 n2c241 8 entities1 discharge summaries 2018 NER 48727 6091 6091

BC2GM42 gene Medline abstract 2008 NER 26006 3251 3251

BC4CHEMD43 drug/chem PubMed abstract 2015 NER 94170 11772 11771

JNLPBA44 gene GENIA version 3.02 corpus 2003 NER 29559 3695 3695

NCBI-disease45 disease PubMed abstract 2014 NER 10125 1266 1266

2018 n2c241 disease discharge summaries 2018 RE 72786 9099 9098

EUADR46 gene-disease Medline abstracts 2012 RE 284 36 35

GAD21 gene-disease genetic association studies 2004 RE 4097 513 512

The data splits are counted based on the number of sentences.
1A total of 8 entities are considered including reason, frequency, ADE, strength, duration, route, form, and dosage. Details about the 2018 n2c2 dataset can be found in Supplementary materials.

https://doi.org/10.1038/s41746-024-01126-4 Article

npj Digital Medicine |           (2024) 7:127 6



LSTM as its backbone. We selected this model in the interest of inves-
tigating the effect of federation learning on models with smaller sets of
parameters. For LLMs, we selected GPT-4, PaLM 2 (Bison and Unicorn),
and Gemini (Pro) for assessment as both can be publicly accessible for
inference. A summary of the model can be found in Table 5, and details
on the model description can be found in Supplementary Methods.

Training details
Datapreprocessing. we adaptedmost of the datasets from the BioBERT
paper with reasonable modifications by removing the duplicate entries
and splitting the data into the non-overlapped train (80%), dev (10%),
and test (10%) datasets. The maximum token limit was set at 512, with
truncation—coded sentences with lengths larger than 512 were trimmed.

Federated learning simulation. We considered two different learning
settings: learning from IID data and learning from non-IID data. For the
first setting, we randomly split the data into k folds uniformly. Formost of
our experiments, kwas chosen as 10, while we also varied k from2 to 10 to
study the impact of the size of the federation. For the second setting, we
considered learning from heterogeneous data collected from different
sources. This represents the real-world scenario where complex and
entangled heterogeneities are co-existed. We picked BC2GM and
JNLPBA as two independent clients, both targeting the same gene entity
recognition tasks but were collected from different sources. To show that
they are non-IID distributed, we have conducted data distribution ana-
lysis (i.e., calculate the distribution distance and plot t-SNE on embedded
features space), which can be found in Supplementary Discussions.

Table 5 | List of LMs used for comparison

Model Param Backbone Pre-trained source Year

BiLSTM-CRF39 20M LSTM – 2015

BERT1 109M Transformer encoder Wikipedia + BooksCorpus 2018

BlueBERT12 334M Transformer encoder PubMed 2019

BioBERT8 108M Transformer encoder Wikipedia + BooksCorpus + PubMed + PMC 2020

Bio_ClinicalBERT9 108M Transformer encoder Clinical notes 2019

GPT-238 124M Transformer decoder Wikipedia +news+books 2019

GPT-447 – Transformer decoder – 2023

PaLM 248 – Transformer Web documents, books, code, mathematics, and conversational data 2023

Gemini49 – Transformer decoder Web documents, books, code, images, audio, and video data 2023

Fig. 4 | A comparison of centralized learning,
federated learning, and single-client learning. The
arrows indicate the data flow through the model
training process.

Fig. 5 | An example of applying few-shot
prompting in an LLM to solve an NER task. We
formulated the prompt to include a description of
the task, a few examples of inputs (i.e., raw texts) and
outputs (i.e., annotated texts), and a query text at
the end.
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LLMs with few-shot prompting. We followed a similar experiment
protocol as in the previous study32. Figure 5 shows an example of applying
few-shot prompting in a LLM to solve an NER task. A RE task can be
solved similarly by changing the task description, and input-output pairs.
Notably, we simulate 1-/5-/10-/20-shot prompting by varying the
number of input examples that are randomly selected from the training
dataset. For model evaluation, we randomly selected 200 test samples in
the test dataset and reported the prediction performance over the selected
samples.

Training models. For models that require training, we used Adam to
optimize ourmodels with an initial learning rate of 0.001 andmomentum
of 0.9. The learning rate was scheduled by linear_-
scheduler_with_warmup. All experiments were performed on a system
equipped with an NVIDIA A100 GPU and an AMD EPYC 7763 64-core
Processor.

Reported evaluation. For NER, we reported the performance of these
metrics at the macro average level with both strict and lenient match
criteria. Strict match considers the true positive when the boundary of
entities exactly matches with the gold standard, while lenient considers
true positives when the boundary of entities overlaps between model
outputs and the gold standard. For all tasks, we repeated the experiments
three times and reported the mean and standard deviation to account for
randomness.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
All the datasets involved in this study are publicly available from the fol-
lowing official websites: 2018 n2c2: https://portal.dbmi.hms.harvard.edu/
projects/n2c2-nlp/. BC2GM: https://biocreative.bioinformatics.udel.edu/
tasks/. BC4CHEMD: https://biocreative.bioinformatics.udel.edu/
resources/biocreative-iv/chemdner-corpus/. JNLPBA: http://www.
geniaproject.org/shared-tasks/bionlp-jnlpba-shared-task-2004. NCBI-dis-
ease: https://www.ncbi.nlm.nih.gov/CBBresearch/Dogan/DISEASE/.
EUADR: https://biosemantics.erasmusmc.nl/index.php/resources/euadr-
corpus. GAD: https://maayanlab.cloud/Harmonizome/dataset/GAD
+Gene-Disease+Associations.

Code availability
Our project codes are publicly available on Github: Train and evaluate FL
models: https://github.com/PL97/FedNLP. Texts preprocessing: https://
github.com/PL97/Brat2BIO. Evaluation: https://github.com/PL97/NER_
eval. LLMs evaluations: https://github.com/GaoxiangLuo/LLM-BioMed-
NER-RE.
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